نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه تبریز

2 استاد گروه ژئومورفولوژی، دانشکده‌ی برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

3 دانشجوی دکتری ژئومورفولوژی، دانشکده‌ی برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

چکیده

جریان‌های آواری از جمله حرکات توده‌ای هستند که همیشه فعالیت‌های انسانی را تهدید کرده و باعث وارد آمدن خسارت-های فراوانی می‌شوند. تحقیق حاضر با هدف پهنه‌بندی خطر وقوع جریان آواری در حوضه آبریز لیلان چای واقع در استان آذربایجان شرقی و تأثیر این مخاطره بر روی مخروط‌افکنه لیلان انجام شده است. به همین منظور از 10 معیار مؤثر شامل شیب، جهت شیب، طبقات ارتفاعی، کاربری اراضی، لیتولوژی، بارش، فاصله از گسل، تراکم آبراهه، فاصله از آبراهه و فاصله از جاده جهت پهنه‌بندی خطر وقوع جریان آواری استفاده شده است. از روش تصمیم‌گیری چند معیاره و مدل فازی جهت تعیین وزن و اهمیت معیارها استفاده گردید. نتایج وزن‌دهی معیارها با روش SAW نشان داد که سه معیار لیتولوژی، شیب و بارش به ترتیب با وزن 260/0، 211/0 و 190/0 نقش مهمی در وقوع جریان آواری در منطقه دارند. نقشه نهایی خطر وقوع جریان آواری با هم‌پوشانی و ضرب وزن نهایی معیارها در لایه‌های فازی شده در محیط GIS تهیه شد. نتایج تحقیق نشان داد که حدود 16 درصد مساحت منطقه در طبقه خطر زیاد و خیلی زیاد از نظر وقوع جریان آواری قرار دارد. این مناطق بیشتر ارتفاعات بالا، شیب‌های زیاد و دامنه‌های شمالی و غربی را شامل می‌شوند. بنابراین با توجه به وقوع این پدیده در مناطق بالادست حوضه، امکان انتقال این مواد به مناطق پایین‌دست و حتی سطح مخروط افکنه به دلیل مسافت خیلی طولانی و همچنین وجود سیل‌بندهای متعدد بر روی آبراهه‌های منطقه بسیار پایین است و این مخاطره خطری برای مخروط افکنه لیلان نمی‌تواند داشته باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Zoning of Debris flow risk using FUZZY-SAW Model Case study: Leilan Chai basin, northwestern Iran

نویسندگان [English]

  • Davoud Mokhtari 1
  • Mohammad Hossein Rezaei Moghaddam 2
  • Somayyeh Moazzez 3

1 Academic member

2 Professor of Geomorphology, Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

3 PhD student in Geomorphology, Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz,Tabriz, Iran

چکیده [English]

1-Introduction
Debris flows are mass movements that always threaten human activities and cause a lot of damage. The aim of this study was to zoning the risk of debris flow in the Leilan Chai catchment located in East Azerbaijan province and the impact of this hazard on the Leylan alluvial fan. For this purpose, 10 effective criteria in the occurrence of this hazard, including slope, aspect, elevation classes, land use, lithology, precipitation, distance to fault, river density, distance to river and distance to road were used to prepare a zoning map for debris flow hazard. Identifying areas with high risk sensitivity helps regional managers and planners to manage and control this risk in the basin.
2-Methodology
Leilan Chai catchment as one of the tributaries of Zarrineh Rood River is one of the important rivers in the eastern part of Lake Urmia (Movahed danesh, 1999:45). This basin is located in East Azerbaijan province in terms of political divisions. The area of this basin is 723 Km2 and is located in the geographical coordinates of 37° 00′ 31″ to 37° 38′ 20″ north latitude and 46° 14′ 26″ to 46° 38′ 37″ east longitude. The minimum elevation of the basin is 1356 meters and the maximum elevation in the heights of Sahand Mountain is 3554 meters. This basin forms an alluvial fan at the exit of the mountain that called Leilan. In the present study, the SAW decision-making method has been used to weight the criteria. Layer fuzzy was also performed due to their importance in the occurrence of debris flow in ArcGIS and Idrisi software.



3-Results and Discussion
Mass movements such as debris flows have always been a threat to the development of human activities. The results of weighting the criteria using SAW method showed that lithology, slope and precipitation criteria with a weight of 0.260, 0.211 and 0.190, respectively, are of more importance in the occurrence of this hazard in the study area. After determining the weight of the criteria and sub-criteria, the layers were overlapped in the GIS environment and a potential map of the risk of debris flow in 5 classes was prepared. The results of the final map show that upstream of the basin area due to having high altitude and receiving more rainfall during the year and also having a high slope are highly sensitive to the occurrence of debris flow. The downstream areas of the basin, despite the high density of river and the presence of numerous faults, but due to the very low slope, show low sensitivity to the occurrence of debris flow.
4-Conclusion
In this study, an attempt was made to prepare a map of the risk of debris flow occurrence in the Leilan Chai basin using effective criteria in the occurrence of this risk. The final debris flow hazard map was prepared by overlaying and multiplying the final weight of the criteria in fuzzy layers in GIS environment. The results showed that about 117 Km2 (16% of the area) of the study area is in the high and very high risk classes in terms of sensitivity to debris flow. In contrast, 49% of the total area is low and very low sensitivity to this risk. Areas located in high and very high classes mainly include the upper parts of the basin, which have the potential for this risk in terms of slope, precipitation (more than 400 mm) and lithology (presence of volcanic ash). Also, according to the research results, it can be said that this hazard cannot have much effect on the Leilan alluvial fan. Due to the occurrence of this hazard in the upper parts of the basin, the possibility of transferring these materials to the downstream areas and even the surface of the alluvial fan is very low due to the very long distance.

کلیدواژه‌ها [English]

  • Debris flow
  • Zoning
  • GIS
  • FUZZY-SAW Model
  • Leilan Chai catchment
  • Northwest of Iran
Abedini, M. (2004). The Role OF Major Factors Upon the Generation and Evolution of Debris Flows in South-Western Range of Hadishahr- Dare Deez (North -West of Azarbaeejan), Geographical Research, 19, 3, 193-212.
Alexander, J., Horton, Tristram C. Hales., & Chaojun Ouyang, Xuanmei Fan. (2019). Identifying earthquake debris flow hazard using Massflow, Engineering Geology.
Amini Faskhoudi, A. (2006). the Application of Fuzzy Logic Inference in Regional Developmentand Planning Studies, Knowledge and Development,  17, 39-61.
Ariapour, M.,  Bashiri, M., & Golkarian, A. (2019). Modeling of Mass Movements Using Data Mining Methods in the Southeast of Neyshabur City, Razavi Khorasan Province, Hydrogeomorphology,  5, 19, 55-77.
Asghari, S.,  Hasan zadeh, R., &  Raoofi, S. (2020). Investigation of Factors Influencing rock fall and Its Zoning with Logistic Regression in Ali Abad Basin of Horand., Hydrogeomorphlogy,  6, 23, 21-38.
Behniafar, A., Boromand, R. (2015). Zoning the potential of slope instabilities with emphasis on debris flows in the Sarasiab mountain basin (Binalood zone). Journal of Geographical Sciences, 23, 30-45.
De Haas, T., Braat, L., Leuven, J. F. W., Lokhorst, I. R., Kleinhans, M. G. (2015). Effects of debris-flow composition and topography on runout distance, depositional mechanisms and deposit morphology. J. Geophys. Res. EarthSurf. 120, 1949-1972.
Fatemi, S.B., Rezaei, Y. (2012).Principle of remote sensing, Azadeh Press, pp. 296.
Federal Emergency Management Agency (FEMA). (2000). Alluvial Fan Hazards and Management. FEMA165.
Field, C.B., Barros, V., & Stocker, T.F. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation, Special report of the IntergovernmentalPanel on Climate Change. Journal of Clinical Endocrinology & Metabolism, 18 (6), 586-599.
 Ghaed rahmati, S.,  Bastanifar, I., & Soltani, L. (2011). A Survey of Density Effect on the Vulnerability of Earthquake in Isfahan City (Fuzzy Approach). Geography and Environment Planning, 22(1),  107-122.
Hack, JT., Goodlett, J. C. (1960). Geomorphology and forest ecologyof a mountain region in the central Appalachians, US GeologicalSurvey Professional Paper, 347, 66.
Hossein zadeh, M. M., Servati, M.R., Mansori, A., Mirbageri, B., & Khezri, S. (2009). Zoning of mass movements Occurrence Risk using logistic regression model, Iranian Journal of Geology,  3 (119), 27-37.
Ilanloo, M. (2011). A comparative study offuzzy logic approach for landslide susceptibility mapping using GIS: Anexperience of Karaj dam basin in Iran.Procedia, Social and Behavioral Sciences, 19, 668-676.
Iverson, R. M. (1997). The physics of debris flows. Rev, Geophys, 35 (3), 245-296.
Karami, A., Abdshahi, A. (2011). Ranking of Townships in Kohgiloyeh and Boyerahmad Province in terms of Development using Fuzzy Approach, Journal of Agricultural Economics Research, 3( 11), 117-136.
Karam, A., Paknejad, F., Bahram abad,E.(2021). Zonation of unstable slopes with respect to the debris flows using random forest algorithm (case study: Basin Tngrah Golestan Province), Quantitative Geomorphological Research, 9(3), 59-74.
Khezri, S., Ahmadi, M., & Mohammadi Motlag, A. (2015). Hazard analysis and zoning of Debris flows and its cones in the mountainous region of Paveh, Quantitative Geomorphological Research, 3(4), 1-16.
Liu, X., Lie, J. (2003). Amethod for assessing reginal debris flow risk, Geomorphology, Vol.52, p 181-193.
Mahmodi, F. (2003). Dynamic geomorphology, Payam Noor UniversityPublishers.
May, C. L., Gresswell, R. E. (2004) Spatial and temporal patterns of debris-flow deposition in the Oregon Coast Range, USA, Geomorphology, 57, 135-149.
Momeni, M. (2008). New Topics Research in Operations, Faculty of Management Tehran University. Tehran. Second edition.
Motakan, A. A., shakiba, A. R., Pourali, S. H., & nazmfar, H. (2009). Locating suitable areas for landfilling using GIs Study area (Tabriz city), Environmental Sciences, 6, 121-136.
Movahed danesh, A .A. (1999). Iran surface water hydrology, Samt Publications, Fifth Edition, 45.
Pasuto, A., Soldati, M. (2004). An integrated approach for debrise flow in the Italian Dolomites, Geomorphology, Vol.61, P 59-70.
Pourghasemi, H.R., Moradi, H.R., Fatemi Aghda, S.M., Mahdavifar, M.R., &  Mohammdi, M. (2009). Landslide Hazard Assessment Using Fuzzy Multi Criteria Decision- Making Method. Iranian Journal of Watershed Management, Science & Engineering, 3(8), 51-62.
Qiang, Zou., Peng, Cui., Jing, He., & Yu, Lei. Shusong, Li. (2019). Regional risk assessment of debris flows in China—An HRU-based approach, Geomorphology, 34, 84-102.
Rasuly, A.A. (2009). Principle of applied remote sensing and image processing. University of Tabriz Press, pp. 403.
Saffari, A., Sasanpour, F., & Mousavand, J. (2010).Assessing the vulnerability of urban areas to flood risk using GIS and fuzzy logic Case study: District 3 of Tehran, Journal of Applied researches in Geographical Sciences. 20, 129.
Salari, M., Moazed, H., & Radmanesh, F. (2012). Site Selection for Solid Waste by GIS & AHP-FUZZY Logic (Case Study: Shiraz City), The Journal of Toloo-e-behdasht, 11, 88-96.
Sargaonkar, A., Rathi. B., & Baile A., (2010). Identifying Potential sites for artificial groundwater recharge in sub-watershed of River Kanhan, India, Environment Earth Sciences, 1-10.
Scott, K. M. (1971). Origin and sedimentology of 1969 debris flows near Glendora, California, U.S. Geological Survey Professional Paper, 750-C, 242-247.
Shen Shiwei1 & Xie He’En2&Xu Yan2 & Zhang Min2 & Niu Xiaobin2 & Li Guoliang. (2020). Fuzzy comprehensive evaluation of debris flow in Matun village,Laomao Mountain area, Dalian city, Arabian Journal of Geosciences, 13(49). https://doi.org/10.1007/s12517-019-5011-y.
T, de Haas., A, L, Densmore, M, Stoffel, H, Suwa, F, Imaizumi, J, A, Ballesteros-C ́anovas & T. Wasklewicz (2017). Avulsions and the spatio-temporal evolution of debris-flow fans, Earth Science Reviews.
Takahashi, T. (1978). Mechanical aspects of debris flow, American Society of Civil Engineers Proceedings, Journal of the Hydraulics Division, 104, 1153–1169.
Tamara, Michelini, Francesco, Bettella, & Vincenzo, D'Agostino. (2017). Field investigations of the interaction between debris flows and forest vegetation in two Alpine fans, Geomorphology, 279, 150-164.
Tjalling, de Haas., Dario, Ventra, Patrice E, Carbonneau, & Maarten G, Kleinhans. (2014). Debris-flow dominance of alluvial fans masked by runoff reworking and weathering, Geomorphology, 217, 165-181.
Wan-jie Liang, Da-fang Zhuang, Dong Jiang, Jian-jun Pan, Hong-yan Ren. (2012). Assessment of debrisflow hazards using a Bayesian Network, Geomorphology, 171–172, 94-100.
Zadeh L. A. (1975). The concept of a linguisticvariable and its application to approximate reasoning—I. Information Sciences, 8(3), 199-249.