Abdideh, M.; Qarashi, M.; Rangzan, K.; & Arian, M. (2011). Relative Assessment of Active Infrastructure Using Morphometric Analysis, A Case Study of the Dez River Basin, Southwestern Iran, Quarterly Journal of Earth Sciences, 20(80), 33-46.
Asghari Saraskanrood, S.; & Qala, E. (2019). Investigating the Relationship between Hydro geomorphic Properties and Sediment Production (Case Study: Qarnaqo Basin in East Azerbaijan Province), Quantitative Geomorphological Research, 8(1), 164-146.
Heidari Tashe Kaboud, S., & Rezaian, Hassan. (2019). Estimation of suspended sediment load values of the river using colonial competition algorithm, Journal of Science and Engineering Elites, 2, 288-282.
Shayan, S., Zare, G., Yamani, M., & Sharifi Kia, M. (2013). Analysis of the trend of statistical changes in discharge and sediment of the catchment area and its application in environmental planning, Iranian Journal of Applied Geomorphology, 2, 37-50.
Gholami, L.; Sadeghi, H.; Khaledi Darvishan, A.W.; & Tellvri, A.R. (2008). Modeling of sediment caused by showers using rain and runoff variables, Journal of Agricultural Sciences and Industries, 2, 271-236.
Fattahi, M.H., & Talebzadeh, Z. (2017). Relationship between catchment compression coefficient and its fractal properties, Iran Water Resources Research, 13(1), 203-191.
Karami, F., & BayatiKhatibi, M. (2019). Modeling soil erosion and prioritizing sediment production in the Sattar Khan Ahar dam basin using MUSLE and SWAT models, Hydrogeomorphology, 5(18), 137-115.
Motamedi, R., & Azari, M. (2017). The relationship between geomorphic features and watershed sediment (Case study: Selected sub-basins of Khorasan Razavi), Environmental Erosion Research, 28, 82-101.
Naseri, F., Azari, M., & Dastarani, MT. (2019). Optimization of Sediment Level Equation Coefficients Using Genetic Algorithm (Case Study: Ghazaghli and Bagh Abbasi Stations), Iranian Journal of Irrigation and Water Engineering, 9(35), 97-82.
Honarbakhsh, A., Niazi, A., Soltani Koopai, S., & Tahmasebi, P. (2019). Modeling the relationship between sediment content and hydrological and environmental characteristics of the basin (Case study: Dez dam basin), Quantitative Geomorphological Research, 8(1), 117-105.
Aher, P.; Adinarayana, J., & Gorantiwar, S.D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach, Journal of Hydrology, 511, 850-860.
Ares, M.G., Varni, M., & Chagas, C. (2016). Suspended sediment concentration controlling factors: an analysis for the Argentine Pampas region, Hydrological Science Journal, 61(12), 2237-2248.
Khanchoul, K., Boukhrissa, Z.E.A., Acidi, A., & Altschul, R. (2010). Estimation of suspended sediment transport in the Kebir drainage basin, Algeria, Quaternary International, 262, 25-31.
Lamb, E., & Toniolo, H. (2016). Initial Quantification of Suspended Sediment Loads for Three Alaska North Slope Rivers, Water, 419(8), 2-11.
Pal, B., Samanta, S., & Pal, D.K. (2012). Morphometric and hydrological analysis and mapping for Watut watershed using remote sensing and GIS techniques, International Journal of Advances in Engineering & Technology, 2(1), 337- 357.
Patrick Laceby, J., McMahon, J., Evrard, O., & Olley, J. (2015). A comparison of geological and statistical approaches to element selection for sediment fingerprinting, Journal of Soils Sediments, 15, 2117-2131.
Pohlert, T. (2015). Projected climate change impact on soil erosion and sediment yield in the River Elbe catchment, Springer International Publishing Switzerland, 4, 97-108.
Salim, A. H. A. (2014). Geomorphological analysis of the morphometric characteristics that determine the volume of sediment yield of Wadi Al-Arja, South Jordan, Journal of Geographical Sciences, 24(3), 457-474.
Schumm, S.A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Geological society of America bulletin, 67(5), 597-646.
Sharma, S.K., & Tiwari, K.N. (2009). Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment, Journal of hydrology, 374(3), 209-222.
Strahler, A.N. (1958). Dimensional analysis applied to fluvial eroded landforms, Geological Society of America Bulletin, 69(3), 279-300.
Strahler, A.N. (1957). Quantitative analysis of watershed geomorphology, Eos, Transactions American Geophysical Union, 38(6), 913-920.
Tamene, L; Park, S.J; Dikau, R. & Vlek, P.L.G. (2006). Analysis of factors determining sediment yield variability in the highlands of northern Ethiopia, Geomorphology, 76, 76–91.
Zare chahuki, M.A. (2010). Data analysis in natural resources research using SPSS software, first edition, Jahad University press, 309.
Zhang, H.Y., Shi, Z.H., Fang, N.F., & Guo, M.H. (2015). Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China, Geomorphology, 234, 19-27.
Ziegler, AD., Benner, G., & Tantasirin, C. (2014). Turbidity-based sediment monitoring innorthern Thailand: hysteresis, variability, and uncertainty, Journal of Hydrology, 519, 2020–2039.