واسنجی و ارزیابی عملکرد مدل IHACRES در شبیه سازی رواناب در زیرحوضه ی آبریز لنبران، اهرچای

نوع مقاله : علمی

نویسندگان

1 استاد، ژئومورفولوژی، دانشکده ی برنامه ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

2 دانشیار، ژئومورفولوژی، دانشکده ی برنامه ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

3 دانشجوی دکتری، ژئومورفولوژی، دانشکده ی برنامه ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

چکیده

حوضه­ های آبریز سیستم های بازی هستند که با توجه به پیچیدگی آن و برای دست یافتن به اهداف موردنظر، اقدام به مدل­سازی می­شود. از طریق مدل­سازی هزینه­ ی مطالعه برای سامانه های پیـچیده کاهش می­یابد، زیرا انجام آزمایشات صحرایی در سطح وسیع بسیار پرهزینه و یا غیرممکن هستند. همچنین از طریق تحلیل نتایج حاصل از مدل می­توان بخوبی حوضه­ های آبریز را مدیریت کرد. در این پژوهش میزان عملکرد مدل بارش-رواناب IHACRES در شبیه­ سازی رواناب حوضه­ ی آبریز لنبران ارزیابی گردید. داده ­های ماهانه بارندگی و دمای ایستگاه ورزقان به عنوان متغیرهای ورودی برای شبیه­ سازی جریان و داده ­های مشاهداتی دبی در ایستگاه هیدرومتری کاسین برای سنجش دقت مدل IHACRES به کار گرفته شد. بر اساس سال های موجود، از داده­های سال 2002-2000 برای سازگاری مدل و 2012-2003 برای واسنجی و 20016-2013 برای اعتبارسنجی مورد استفاده قرار گرفتند. برای بررسی توانایی مدل IHACRES در شبیه­ سازی رواناب از معیار ضریب نش – ساتکلیف استفاده گردید. نتایج نشان داد که این ضریب 71/0 و 74/0 به ترتیب برای واسنجی و اعتبارسنجی بدست آمد. بنابراین با توجه به نتایج حاصل از ارزیابی مدل IHACRES با استفاده از معیارهای عملکردی مختلف و به دلیل کاربری آسان، و ورودی­ های کمتر و کاهش صرف زمان می­توان استفاده از این مدل را جهت شبیه­ سازی و پیش­بینی رواناب در مقیاس ماهانه در حوضه­ ی آبریز لنبران توصیه نمود و از آن جهت بررسی و مطالعه­ی رواناب سطحی و جریان رودخانه ­ای طی دوره­ های آتی استفاده کرد.

تازه های تحقیق

-

کلیدواژه‌ها


عنوان مقاله [English]

A Calibration and Dvaluation of IHACRES Model in Runoff Simulation the Lanbaran Sub-basin, Ahar Chay

نویسندگان [English]

  • Mohammad Hossein Rezaei Moghaddam 1
  • Mir Asadolah Hejazi 2
  • Abdollah Behbuodi 3
1 Professor, Geomorphology, Faculty of Planning and Environmental Sciences, Tabriz University, Tabriz, Iran
2 Associate, Geomorphology, Faculty of Planning and Environmental Sciences, Tabriz University, Tabriz, Iran
3 Ph.D, Student, Geomorphology, Faculty of Planning and Environmental Sciences, Tabriz University, Tabriz, Iran
چکیده [English]

1- Introdution
Watersheds are open systems which, due to its complexity and in order to achieve the desired goals, are modeled. Through modeling, the cost of study for complex systems is reduced because large-scale field trials are very costly or impossible. Also, by analyzing the results of the model, we can manage the watersheds well. In this research, the performance of the IHACRES rainfall-runoff model was evaluated in the simulation of runoff in the Lanbarn basin.  The monthly data on rainfall and temperature of  Varzaghan station as input variables for flow simulation and observation data of runoff at Cassin hydrometric station were used to measure the accuracy of the IHACRES model. Based on available years, data from 2002-2000 were used for warming up the model and data from 2012- 2012 were used for calibration and data from 2016-2013 were used for validation purposes. To evaluate the ability of the IHACRES model in runoff simulation, the Nash-Sutcliff coefficient was used. The results showed that the coefficient was 0.71 and 0.74 for calibration and verification, respectively. Therefore, according to the results of the evaluation of the IHACRES model using different performance criteria and because of easy access, less inputs and a reduction in the time spent, it can be advised to use the model to simulate and predict runoff in a monthly scale in the Lanbarn watershed

 

and to use it in order to study surface runoff and river flow in future periods.
1- Introduction
In order to manage watersheds and prevent inconsistencies in measures taken at the catchment area, a model is needed which, according to the existing information and conditions, has the efficiency of simulating the outflow of the region (Yong et al., 2014:47). Integrated models require less information than distributed and semi-distributed models, and, on the other hand, they run faster than other models (Golshan et al., 2017:966). The IHACRES model is an integrated concept model that includes a nonlinear reduction model and a linear lattice model. Despite the relatively recent development of IHACRES, this model has been widely accepted among hydrological models (Sriwongsitanon & Taesombat, 2011). The number of parameters in this model is low, while simultaneously compared with distributed models, we have tried to provide more details of the internal processes (Croke & Jakeman, 2008, Golshan, et al., 2017:966).
2- Methodology
To do this research, the monthly data on rainfall and temperature of Varzaghan station as input variables for flow simulation and observation data of runoff at Cassin hydrometric station were used to measure the accuracy of the IHACRES model. Based on available years, data from 2002-2000 were used for warming up the model and data from 2012- 2012 were used for calibration and data from 2016-2013 were used for validation purposes. The IHACRES model is an integrated metric conceptual model for rainfall-run simulation. This model was developed by Jackman in 1990. The model needs 5 to 7 variables for calibration and is suitable for implementation in large scale basins. In this study, version 2 of this software has been used, which is applicable for basins with continuous data of rainfall, temperature and runoff. This model consists of two nonlinear and linear interconnected segments that are

 
respectively defined for calculation of losses and effective rainfall conversion to runoff.
3- Results
Based on the results, Nash-Sutcliff coefficient was 0.71 and 0.74 for calibration and verification, respectively. Therefore, it can be stated that the model of low discharge simulates well, but in simulating the maximum discharge, it has little ability and simulates lesser amounts of observational flow. In general, due to low model deviations and good simulation of minimum discharge values, it can be argued that the performance of the IHACRES model in the Lanbaran catchment area is satisfactory.
4- Discussion and Conclusion
Given the diversity of rainfall-runoff models, selecting an appropriate model for watersheds is important for increasing the efficiency of planning and managing water resources. Hence, in this study, IHACRES model performance was evaluated in runoff simulation in the Lanbaran watershed. According to the results of the calibration and verification of the model in runoff simulation based on different performance criteria, the model was found to have a high accuracy in simulating runoff at the station under study. It also simulates the amount of monthly flow, which is consistent with the results of studies of Zarei et al. in the basin of Kasaliyan, Lotfirad et al. in the Nawarud basin and the studies of Croke and Jakkman. Therefore, according to the results of the evaluation of the IHACRES model using different performance criteria and because of easy access, less inputs and a reduction in the time spent, it can be advised to use the model to simulate and predict runoff in a monthly scale in the Lanbarn watershed and to use it in order to study surface runoff and river flow in future periods.
 

کلیدواژه‌ها [English]

  • Hydrological model
  • IHACRES
  • Aharchay
  • Calibration
Reference
Abdollahi Pur, A., Moazami Goodarzi, S., & Zakir Niri, M. (2015). Evaluation of Satellite Rainfall Algorithms in Simulation of Daily Sarogh Chi Flow Using IHACRES Model: The Journal of water engineering. 8, 59-71.
Abushandi, E.H., and Broder, M. (2011). Application of IHACRES rainfall-runoff model to the Wadi Dhuliel arid catchment, Jordan: Water and Climate Change. 2(1), 56-71.
Amiri, A., & Rod Bari mousavi, M. (2016). Evaluation of IHACRES Hydrological Model in Simulation of Daily Discharge (Case Study: Paul and Shall Man Rivers): The Journal of Eco hydrology. 3(4), 533-543.
Ayele, G.T., Teshale, E.Z., Yu, B., Rutherfurd, I.D., Jeong, J. (2017). Streamflow and Sediment Yield Prediction for Watershed Prioritization in the Upper Blue Nile River Basin. Ethiopia: Water, 9(782), 1-29.
Beven, K.J. (2001). Rainfall-runoff modelling: The Primer,John Wiley and Sons Press, 360.
Booij, M.J. (2002). Appropriate modeling of climate change impacts of river flooding: Ph.D. Thesis, University Twente, Netherlands, 179.
Carcano, E.C., P. Bartolini, M. Muselli and L. Piroddi. (2008). Jordan Recurrent Neural Network Versus IHACRES in modeling daily stream flows: Hydrology, 362, 291-307.
Carlile, P.W., Croke, B.F.W., Jakeman, A.J. and Lees, B.G. (2004). Development of a semi distributed catchment hydrology model for simulation of land-use change streamflow and groundwater recharge within the Little river catchment: NSW, In I.C. Roach (ed.). Regolith, CRC LEME, 51, 54–56.
Croke, B.F.W. and A.J. Jakeman. (2008). Use of the IHACRES rainfall-runoff model in arid and semi-arid regions: In: H.S. wheatear, S. Sorooshian and K.D. Sharma, (eds.) Hydrological Modelling in Arid and Semi-Arid Areas. Cambridge University Press. Cambridge, 41-48.
Croke, B.F.W., Andrews, F., Kasetsart, S., Cuddy, J. and Luddy, A. (2005). Redesign of the IHACRES rainfall-runoff model: In 29th Hydrology and Water Resources Symposium, 21–23 Febuary, Canberra, 333-339.
Dodangeh, E., Shahdi, K., Solimani, K. (2018). Application of Coppola theory to evaluate the performance of IHACRES hydrological model (Case study: Taleghan Watershed): The Journal of Physics of Earth and Space, 44(1), 71-88.
Dye, P.J. & Crok, B.F.W., (2003). Evaluation of Streamflow predictions by the IHACRES rainfall-runoff: Environmental Modelling & Software, 18, 705–712.
Ghorbani, KH., Sohrabiyan, E., Salary Jazi, M., & Abdul Hosseini, M. (2016). Forecasting the Impact of Climate Change on the Monthly River Flow Process Using IHACRES Hydrological Model (Case Study: Galichesh Watershed): The Journal of Conservation of soil and water resources, 5(4), 20-33.
Godarzie, M., Motamed Vasari, B., & Mir Hosseini, M. (2017). Evaluation of Application of IHACRES Model for Simulation of Surface Runoff under Climate Change (Case Study: Can Watershed): The Journal of Watershed Management Science and Engineering of Iran, 11(38), 83-94.
Godarzie, M., Salahi, B., & Hosseini, A. (2018). Evaluation of IHACRES Model in Simulation of River Flow in Lake Urmia Watershed: The Journal of Watershed Management Science and Engineering of Iran. 12(43), 1-10.
Golshan, M., Ismaili, A., Afzali, A., & Jahanshahi, A. (2017). Comparison of IHACRES and HEC-HMS Hydrological Models for Flood Hydrograph Simulation: The Journal of Iranian Natural Resources, 4(70), 965-967.
Jahan Bakhsh Asl, S., Rezaieh Banafsheh, M., Rustam Zadeh, H., & Ally Nagad, M. (2018). Continuous Rainfall-Runoff Simulation of Urmia River Watershed Using HEC-HMS Model: The Journal of Eco hydrology, 16, 101-118.
Karami, F., & Bayati Khatibi, M. (2019). Modeling soil erosion and sediment yield prioritization in Satar Khan Watershed using MUSLE andSWAT models: The Journal of Hydro geomorphology. 15(18), 115-137.
Khirfam, H., Mustafa Zadeh, R., & Sadeghi, H. (2013). Daily discharge estimation using IHACRES model in some watersheds of Golestan province: The Journal of Watershed Management, 4(7), 114-126.
Littlewood, I,G.,R,T. Clarke, W, Collischonn and B,F,W, Croke. (2007). Predicting daily streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian catchments: Environmental Modelling and Software. 22, 1229-1239.
Lotfi Rad, M., Adib, A., & Hagigy, A. (2018). Estimation of daily runoff using IHACRES semi-conceptual model in Guilan Navrud Watershed: The Journal of Eco hydrology, 5(2), 449-460.
Macintyre, N. and A. Al-Qurashi. (2009). Performance of ten rainfall-runoff models applied to an arid catchment in Oman. Environmental Modelling and Software: 24, 726-738.
Manishdawi, A., Nikbakht Shahbazi, A., & Fathiyan, H. (2018). Continuous Simulation of Rainfall Process - Runoff Using SMA Loss Model in Aboul Abbas Watershed Using HEC-HMS Model: The Journal of Iranian Soil and Water Research, 49(2), 317-327.
Moradi, M., Din pajooh, Y., & Azizi, S. (2018). Comparison of Three Different Methods of Estimating Rainfall Loss in HEC-HMS Model in Runoff Simulation (Case Study: Ghare Sou Watershed in Kermanshah): The Journal of Eco hydrology, 5(2), 433-447.
Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations: ASABE, 50, 885–900.
Nazari poya, H., Kurdawni, P., & Faraji Rad, A. (2015). Calibration and Performance Evaluation of IHACRES and SWAT Hydrology Models in Runoff Simulation: The Journal of Spatial analysis of environmental hazards, 2(2), 99-112.
Rahimi Far, H., He sari, H., Omidi, N., & Asadi, A. (2014). Precipitation simulation-Runoff Rwansar Watershed using IHACRES software: National Conference on Water, Man and Land, Isfahan,1-12.
Razaghiyan, H., Shahdi, K., & Habib Najhad Roshan, M. (2016). Assessing the Impact of Climate Change on Runoff of Babel rood Watershed Using IHACRES Model: The Journal of Irrigation and Water Engineering. 7(26), 161-172.
Schreider, S, Yu, and A.J. Jakeman, (2001). Streamflow modelling on a Sub-daily time step in the Upper Murray basin: Mathematical and Computer Modelling, 33, 659-663.
Sriwongsitanon, N. and Taesombat, W. (2011). Estimation of the IHACRES model parameters for Flood Estimation of Ungauged catchments in the upper ping river basin: Journal Kastsart (natural science), 45, 917-931.
Talibi, A., Eslami, Z., & Abaci, A. (2019). Comparison of flood sub basin prioritization using HEC-HMS model and experimental methods in Eskandari Watershed: The Journal of Watershed Management Science and Engineering of Iran, 11(2), 336-343.
Vaze, J.,D.A. Post, F.H.S. Chiew, J.M. Perraud, N.R. Viney and J. Teng. (2010).Climate non-stationarity validity of calibrated rainfall–runoff models for use in climate change studies: Hydrology, 394, 447-457.
Yang, T.H., Ho, J.Y., Hwang, G.D. and Lin, G.F. (2014). An indirect approach for discharge estimation: a combination among micro-genetic algorithm, hydraulic model, and in situ measurement: Flow Measurement and Instrumentation, 39, 46-53.
Ye, W., A.J. Jakeman and P.C. Young. (1998). Identification of improved rainfallrunoff models for an ephemeral low-yielding Australian catchment: Environmental Modelling and Software. 13, 59-74.
Zandi Dreh Gharibi, F., Khorsandi Kohestani, Z., Mazin, M., & Arman, N. (2017). Comparison of the Performance of Two Hydrological Models IHACRES and GR2M in Simulation of Monthly Flow of Dareh Takht Watershed: The Journal of Irrigation Science and Engineering, 40(2), 147-158.
Zarei, M., Ghanbarpour, M., Habib Najhad Roshan, M., & Shahdi, K. (2009). River Flow Simulation Using IHACRES Rainfall-Runoff Model Case Study: (Kasilian Watershed): The Journal of Watershed Management Science and Engineering of Iran. 3(8), 11-20.
Zarei, M., Habib Najhad Roshan, M., Shahdi, K., & Ghanbarpour, M. (2011). Calibration and Evaluation of IHACRES Hydrological Model to Simulate Daily Flow:  The Journal of water and soil, 1(25), 101-114.