فعالیت‌های تکتونیکی و تأثیر آن در فرونشست زمین در حوضه ی آبریز دشت جوین

نوع مقاله : علمی

نویسندگان

1 دانشجوی دکترا ژئومورفولوژی دانشگاه حکیم سبزواری، ایران

2 عضو هیأت علمی حکیم سبزواری

3 استاد ژئومورفولوژی دانشگاه حکیم سبزواری، ایران

4 استادیار سنجش از دور دانشگاه حکیم سبزواری، ایران

چکیده

  فرونشست پدیده‌ای مورفولوژیکی است که تحت‌تأثیر حرکت فرو‌رو زمین پدید می‌آید. علت رخداد این پدیده ممکن است متأثر از عوامل طبیعی و انسانی باشد. در این پژوهش سعی شده است، فعالیت‌های تکتونیکی و تأثیر آن در فرونشست زمین در حوضه­ی آبریز دشت جوین بررسی شود. جهت دستیابی به این امر از روش‌های کمی از جمله شاخص شکل حوضه (BS)، شاخص عدم تقارن حوضه­ی زهکشی (F) شاخص تقارن توپوگرافی معکوس (T)، شاخص سینوسی جبهه کوهستان (J)، انتگرال هیپسومتری (Hi)، شاخص پهنای کف دره به ارتفاع آن (VF)، شاخص سینوسیته رودخانه (S) شاخص گرادیان طولی رودخانه (SL) استفاده گردید. همچنین با بهره از روش تداخل‌سنج راداری، سعی شد، ژئودوالیتی را در دشت جوین بیان کنیم. نتایج بدست آمده بر اساس شاخص‌ها AF,T,H,SMF,S,VF از لحاظ زمین‌ساختی فعال و شاخص SL در حالت نیمه­فعال قرار دارد. فعالیت‌های تکتونیکی باعث کشیدگی دشت و نامتقارن شدن حوضه و عمیق شدن دره‌ها در محدوه­ی مطالعاتی شده است. نتایج مربوط به تداخل‌سنج راداری نشان می‌دهد در بخش‌های که میزان بالاآمدگی بیشتر است؛ به موازات آن در دشت با فرونشست (با متوسط نرخ4/6 سانتی‌متر در سال) همراه است. همچنین دامنه­ی فرونشست در راستای ارتفاعات به صورت شرقی-غربی می‌باشد و این دو را در ارتباط معناداری قرار داده است که تأییدی بر توسعه­ی نظریه­ی ژئودوالیتی در سطح حوضه می‌باشد. با توجه به مخاطرات ژئومورفیکی حوضه، لازم است در فعالیت‌های عمرانی و آمایش سرزمین، نقشه‌ی پهنه‌بندی خطر منطقه تهیه گردیده و بر مبنای آن اقدامات کنترلی، حفاظتی، پیشگیری و یا هشداردهندگی صورت پذیرد.

تازه های تحقیق

-

کلیدواژه‌ها


عنوان مقاله [English]

The Relationship between Tectonic Activity and Its Impact on Land Subsidence in the Jovein Basin

نویسندگان [English]

  • Robabeh Farzinkia 1
  • Mohmmadali Zanganehasadi 2
  • Abolghasem Amirahmadi 3
  • Rahman Zandi 4
1 Ph.D. Student Hakim Sabzevari University, Sabzevar, Iran
2 Associate Professor at Hakim Sabzevari University, Sabzevar, Iran, - Professor of Hakim Sabzevari University, Sabzevar, Iran
3 Professor of Hakim Sabzevari University, Sabzevar, Iran
4 Assistant Professor of Hakim Sabzevari University, Sabzevar, Iran
چکیده [English]

1- Introduction
Today, the phenomenon of land subsidence is one of the most important geomorphologic hazards on a global scale, causing a great deal of damage to urban and rural construction. According to the UNESCO definition, "subsidence is the collapse or land leveling that occurs due to different large and small scale causes" (Amir Ahmadi et al., 2013: 2). Pourkhosravani et al, (2012) Only with radar interferometer technique studied the geometry of duality, The results of this study showed that, firstly, citing excessive productivity of underground waters is not the main reason for the subsidence phenomenon; secondly, the phenomenon of subsidence in Iran's plains is the result of a duality in the crustal motions between the plains and adjacent mountains. In this research, the tectonic indexes and radar interferometry technique have been used with regard to the data and information available to detect the tectonic activity of the area.
2-Methodology
In order to investigate the state of activity of the newly tectonic area, topographic maps of 1: 50000 and 1: 10000 map of geology and radar images are used in the earthquake discussion from USGS US from 1923

 

to 2018. Also, to study the subsidence of the Joveyn area, the satellite Sentinel-1A satellite radar data for 2017 and 2018 was used in Canada and processed by SNAP software. The resources used in this research were based on library studies and surveys, topographic maps and radar images and field surveys.
3-Discussion and results and findings
The results of the used Indicators, earthquake zoning and radar interference are defined in the research as follows:
River Gradient Index) SL): This index was first presented by Hack (1973), in the study of the role of rock resistance on water flow in the Appalachian Mountains in the southeast of America as numerical values of the river gradient index  Table1).
Table(1): River Gradient Index)SL)





High


ΔH(m)


ΔL(m)


Lsc(m)


Sl


Condition




1200-1300


100


14769


32050


217


low




1100-1200


100


15814


67170


424


medium




1000-1100


100


29798


122931


412


medium





-Asymmetric index(AF):
In this calculation, the obtained numbers (33.7) of the basin showed that the value of the index is less than 50. Therefore, we have the tectonic activity on the left side of the main stream and we face the subsidence phenomenon on the right.
-Reverse topographic symmetry index: (T)
to calculate this index in the Joveyn basin, a section has been created in each sub-area and its value has been calculated. According to (table 2), the index value in all three sub-basins is less than 1, indicating the asymmetry and active tectonics in the whole basin.
 




Table (2): Reverse topographic symmetry index





Route


Da(km)


Dd(km)


T


Condition




1


18/43


21/33


0/86


active




2


15/38


16/91


0/9


active




3


14/53


16/78


0/86


active





-Hypsometric and Hypsometric Integral Curves
In the hypsometry integral, the numerical value has a value of 0.5 in the range of young to adult topography.
Mountain Sinocity Index: (Smf)
Table (3): Mountain Sinocity Index





 shape


LMF


LS


S


Condition




1


26/94


12/34


2/18


Semi active




2


41/86


11/85


3/5


Semi active




3


33/05


18/72


1/76


active




4


46/02


23/04


1/99


active





-Sinocity index of the river: (S)
According to the calculations, the index of the main bend and bend of the main river is less than 1. Which represents the new activities in the region.
-Valley Depth Wide Index (VF):
In passive regions, the average value of this indicator is usually higher than 7 in terms of over-rupture (Ranjbar Manesh, 2013).
Table(4): Valley Depth Wide Index





Condition


Vf


Vfw


Eld


Erd


Esc


number




active


1.3


629


2057


2110


1604


Figure 1




active


0.8


127


1408


1498


1307


Figure 2




active


0.8


73


1354


1424


1301


Figure 3




active


1.6


220


1534


1684


1475


Figure 4




active


2


148


1505


1481


1421


Figure 5




active


1.2


127


1545


1527


1437


Figure 6




active


0/2


87


2324


2115


1877


Figure 7








-Radar interferometric results
According to this map, the maximum subsidence rate in the study area in 2017 and 2018 will be 6.4 and 5.6 respectively. Regarding the maps drawn on this plain with radar interferometry, both indicate the subsidence of the plain. The analysis of plain radar data shows that the highest elevation in the joghatay heights, and the highest subsidence level, occurred on the joveyn Plain floor.
4-Conclusion
Although most scholars consider untreated groundwater to be an important factor in groundwater depletion and the plains of Iran, the role of tectonic factors in exacerbating this phenomenon should not be overlooked. In a study conducted by Purkhosrovani et al. On the causes of the subsidence, only Duval's discussion of radar interferometry was discussed without examining tectonic indices. In this study, in addition to radar interferometry, the tectonic status of the basin was also investigated. For this purpose, geomorphic indices such as watershed shape, drainage basin asymmetry index, inverse topographic symmetry index, mountain front sinusoidal index, hipsometry integral, valley floor height to its height, river sine index, river gradient index, gradient index They offer some of the activities of the area's baby boomers. Among the morphotectonic indices that all indicate tectonic activity in the region, the VF index in the region was less than 2, which by standards is below 6 in this index indicating rising areas. Subsidence caused by tectonic movements occurs when there are two faults, graben and upwelling, and relative movement of parts causes subsidence. The fault status of the area in the southern and northern parts of the region has placed the plain in the graben position. Statistical analysis also showed that the earthquake of 1923 occurred with a magnitude of 6.4 MS. The future activity of these faults may affect the area. The active morphotectonic conditions of the basin, also showed the results of radar interferometry, in the southern part with higher elevation, parallel to subsidence in the plain. The existence of this scouring and its appearance on the radar interferometer map indicates the tectonic activity in the southern ranges
of the study area. These results indicate a significant relationship between the subsidence and its lateral elevations, suggesting that these two movements are dual. Based on the above arguments, it can be concluded that one of the factors affecting the subsidence of the Earth in the juvenile plain is due to its soft crustal motions even in equilibrium. Due to the geomorphic hazards of the basin, it is necessary to prepare a zoning map of the area for development activities and land preparation based on which control, protection, prevention or warning measures will be taken.

کلیدواژه‌ها [English]

  • Subsidence
  • duality
  • Morphotectonics
  • Radar Interferometric
  • Joveyn Plain
Reference
Ahmadi, N., Mousavi, Z., Masoumi, Z., (1397). Study of Subsidence of Khorramdareh Plain Using Radera Interferometer Technique and its Hazards Analysis: Iranian Remote Sensing and GIS Journal, 10(3), 33-52.
Amir Ahmadi, A., Maali Ahari, N., Ahmadi, T., (2013). Determination of Possible Subsidence Areas of Ardebil Plain Using GIS: Journal of Geography and Planning, 17(46), 13-23.
Pourkhosravani, M., Ramasht, M.H., Al-Modarrsi, S.A., (2012). Duality in Geomorphology: Natural Geography Research, 44(3), 72-63.
Ranjbarmanesh, N., Entezari, M., Ramesht, M.R (2013). Groundwater Crisis Due to Tectonic Activity in Mahidasht Plain: Iranian Journal of Applied Geomorphology, 2(1), 10.
Zandi, R., Farzin Kia, R,. Shafiei, N,. (2019). Earth Subsidence and Radar Interferometer. Tehran, Satellite Publications.
Payandeh, Z,. Servati, M. R., Shafi'i, F,. (2016). Evaluation of tectonic activities using geomorphic indices (Case study: northwest of Kabir Kuh anticline): Quantitative Geomorphological Research, 4(4), 104-118.
Shafi'i, N,. Zanganeh Asadi, M. A., Jamalabadi, J,. mojarrad Titankanloo, Z,. (2019). Investigating the Groundwater Causes of Noorabad Plain of Mamasani with Emphasis on the Role of Tectonic Activities and Groundwater: Exploitation Geographical Sciences, 19(1), 254-235.
Jafari, G.h,. (2015). Spatial study of morphotectonic indices of valleys with respect to geological structure (Case study: Part of Roughness of Zanjan province): Hydro-geomorphology, 2(5), 41-61.
Jamal Abadi, J,. Zanganeh Asadi, M.A,. Amir Ahmadi, A., (1396). Investigation of Factors Affecting the Development and Evolution of Alluvial Fans of Southern Slopes with Emphasis on Tectonic Role (West Sabzevar): Geography and Development , 47, 69-88.
Alaei Taleghani, Mahmood,. (2003). Geomorphology of Iran. Second Edition. Tehran, Ghooms Publications.
Shayan, S., Yamani, M., Yadegari, M,. (2016). Land subsidence zoning in Hamadan Gharechai watershed: Hydrogeomorphology, 9, 139-158.
Karami, Fariba, Relative Assessment of Active Tectonics Using Morphometric Methods in the North and Eastern Basins of Sahand Mountain: Journal of Geographical Space, 12(37), 1-18.
Abedini, M,. Shenou Sh,. (2014). Evaluation of Neonatal Construction Activities in the Meshkin Chai Watershed through Geomorphological Indices: Geography and Development, 35, 49-66.
Duglas, W. Burbank, Robert, S. Anderson (2001). Tectonic Geomorphology, Blackwell Science, Ltd.
Gallowey, D.L.; Burbey; T.J., (2011). Regional land subsidence accompanying groundwater extraction: Hydrogeol, J, 19, 1459-1486.
Hamdouni. R.El.; C. Iriggaray, T. Fernandez, J. Chacon, and E.A. Keller. )2008(. Assessment of relative active tectonics, southwest border of the Sierra Nevada (Southern Spain): Geomorphology, 96(1), 150-173.
Keller, E. A, and N. Pinter,. (2002). Active Tectonics–Earthquakes, Uplift and Landscape (2nd    edition). Prentice Hall. London.
Keller, E.A. Pinter, N (1996), Active tectonics; Prentice Hall publisher, New Jersey.
Motagh, M., Shamshiri, R., Haghighi, M.H.,Wetzel, H.U., Akbari, B., avandchi, H., Roessner, S. and Arabi, S., (2017). Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements: Engineering Geology, 218, 134-151.
Pike, R.J.; Wilson, S.E., (1971). Elevation-relief ratio, hypsometric integral and geomorphic area- altitude analysis: Geological Society of America Bulletin, 82(4), 1079-1084.
Randel, T., (1994). Analysis of drainage- basin symmetry as arpin techniques to areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment: Geological society, 106, 571-581.
Vertex.daac.asf.alaska.edu, Canadian Space Agency.
www.USGS.gov, EarthExplorer, (The United States Geological Survey).