پیش‌بینی تغییرات کاربری اراضی با استفاده از مدل سلول‌های خودکار-مارکف در حوضه ی آبخیز بادآور لرستان

نوع مقاله : علمی

نویسندگان

1 دانشجوی دکتری مدیریت حوزه ی آبخیز، دانشگاه لرستان، خرم ‏آباد، ایران

2 دانشیار و عضو هیئت علمی گروه مرتع و آبخیزداری، دانشگاه لرستان، لرستان، ایران (نویسنده مسئول).

3 دانشیار و عضو هیئت علمی گروه مهندسی آبخیزداری، دانشگاه لرستان، خرم‏ آباد، ایران

چکیده

آشکارسازی دقیق تغییرات کاربری اراضی، پایه‌ای برای فهم بهتر روابط و تعاملات انسان و پدیده‌های طبیعی برای مدیریت و استفاده بهتر از منابع را فراهم می‌آورد. هدف از این پژوهش بررسی تغییرات کاربری اراضی در سال‌های گذشته و امکان پیش‌بینی این تغییرات در سال‌های آینده در حوضه­ی آبخیز بادآور نورآباد واقع در لرستان به مساحت 71600 هکتار است. به‌منظور آشکارسازی تغییرات کاربری اراضی از تصاویر سنجنده‏های TM، +  ETMو OLI ماهواره لندست در سال‌های 1370، 1383 و 1395 برای تهیه­ ی نقشه ­ی کاربری اراضی منطقه­ ی موردمطالعه استفاده شد. سپس با استفاده از مدل مارکف، کاربری اراضی سال 1395 شبیه‌سازی و ماتریس احتمال برای 12سال پیش‌بینی تهیه شد. نتایج مدل مارکف و نقشه­ ی کاربری اراضی سال 1395 به‌عنوان ورودی به مدل سلول‌های خودکار معرفی و کاربری اراضی سال 1407 پیش‌بینی شد. ارزیابی میزان تطابق نقشه­ ی شبیه‌سازی‌شده و نقشه­ ی واقعی با ضریب کاپای 97/. نشان داد مدل سلول‌های خودکار- مارکف، مدلی مناسب جهت پیش‌بینی تغییرات کاربری اراضی می‌باشد. نتایج حاصل از تغییرات کاربری اراضی بین سال‌های 1370 تا 1395 نشان داد به وسعت مناطق مسکونی، اراضی دیم، باغ و اراضی کشاورزی آبی افزوده شده است. همچنین نتایج حاصل از پیش‌بینی نشان داد از وسعت مراتع به مقدار 89/659 هکتار کاسته و به اراضی کشاورزی آبی به وسعت 47/395 هکتار افزوده خواهد شد. با توجه به نتایج به‌دست‌آمده تغییرات کاربری اراضی در جهت تخریب عرصه‌های منابع طبیعی بوده است، ازاین‌رو پیشنهاد می‌شود اقدامات حفاظتی و اتخاذ تصمیمات مدیریتی مناسب جهت کنترل تغییرات غیراصولی بیش ‌از پیش ادامه اعمال گردد.

تازه های تحقیق

-

کلیدواژه‌ها


عنوان مقاله [English]

Predicting Land Use Change Using Markov- Cellular Automata Model in Badavar-Nurabad Watershed, Lorestan

نویسندگان [English]

  • Hafez Mirzapour 1
  • Ali Haghizadeh 2
  • Naser Tahmasebipour 3
  • Hossein Zeinivand 3
1 Ph.D, Student of Watershed Management Engineering, Lorestan Universit, Lorestan, Iran
2 Associate Professsor, Department of Watershed Management Engineering, Faculty of Agriculture and Natural resources, Lorestan University, Lorestan, Iran. (Corresponding auther), E-mail:haghizadeh.a@lu.ac.ir
3 Associate Prof. Department of Watershed Management Engineering, Lorestan University, Lorestan, Iran
چکیده [English]

1- Introduction
Accurate detection of changes land use in Accurate and timely, Basis for a better understanding of the relationships and interactions of human and natural phenomena to manage and provides better use of resources. Principal land use management requires accurate and timely information in the form of a map. Regarding the widespread and unsustainable changes in land use, including the destruction of natural resources in recent years, Investigating how landslide changes during time periods are essential for satellite imagery. Since conservation of natural resources requires monitoring and continuous monitoring of an area, Land-use change models are now used to identify and predict land-change trends and land degradation one of the most widely used models in predicting land use change is the Auto-Markov cell model. the aim of present study is to monitor land use changes in the past years and predict changes in the coming years in Badavar-Nurabad watershed in the Lorestan province with an area of 71600 hectares.
 
2- Methodology
The Markov chain method analyzes a pair of land cover images and outputs a transition probability matrix, a transition area matrix, and a set of conditional probability images. The transition probability matrix shows the probability that one land-use class will change to the others . The transition area matrix tells the number of pixels that are expected to change from one class to the others over the specified period (Ahadnejad 2010). Automatic cells are models in which adjacent and continuous cells, such as cells that may include a quadrilateral network, change their state or attributes through simple application of simple rules. CA models can be based on cells that are defined in several dimensions. The rules for changing the state of a cell from one mode to another can be either a combination of growth or decrease, such as a change to a developed cell or without development. This change is the source of the change that occurs in the adjacent cell. Neighborhood usually occurs in adjacent cells or in cells that are close together(Ghorbani et al, 2013).  In order to detect land use changes in the studied area, TM , ETM+  and OLI satellite images of Landsat were used during three time periods of 1991, 2004 and 2016. After applying geometric and atmospheric corrections to images, the land use map for each year was prepared using the maximum probability method. The Kappa coefficient for the classified images of 1991, 2004 and 2016was 0.81, 0.85 And 0.90 obtained. Then, to model land use changes using the Auto-Markov cell model for 2028 horizons, First, in the Idrisi Selva software using Markov chain, the map was selected as input from the years 1991 and 2004, the 12-year prediction of the changes was considered by 2016 to determine the likelihood of a change in application. Then, using the CA-Markov method, the data from the Markov chain and the map of 2016 were used as input data for the automated-Markov cell method.

 
3- Results
Assessment of the match between simulated and actual map of 2016 with 0.97 kappa index showed that this model is an appropriate model for simulating of land use change. The results from monitoring satellite imagery that in 1991 to 2016, the extent of residential areas, land is Dry farming, garden and irrigated farming land added in front of vast pastures, shrubbery and other is reduced. After verifying the model's accuracy, a 2028 map was prepared to predict the changes over the coming years. Well as the results show that the vast pastures of the forecast is reduced in the amount of 659.89hectares and 395.47 hectares will be added to the extent of irrigated farming.
 4- Discussion and conclusion
The results of the Auto-Markov cell model showed that if the current trend continues, the size of the ranges will decrease sharply. Comparison of simulated map of 2016 by model and actual map with Kappa index showed that Auto-Markov cell model is a suitable model for predicting land use change and can accurately assess the future status of land use and vegetation to predict. Therefore, it is suggested protective measures and make appropriate management decisions to control non-normative changes continue to apply more than ever.

کلیدواژه‌ها [English]

  • Landsat
  • CA-Markov
  • remote sensing
  • Land use Changes
  • Kappa index
Reference
Abdolalizadeh, Z., & Ebrahimi, A., (2015). Forecasting Future Changes in Landscape Coverage of Sabzkouh Protected Area Using CA_Markov Model, Iranian Journal of Range and Desert Research, 22(1), 21-21.
Ahadnejad, M., & Rabet, A., (2010). Evalution and forcast of Haman Impacts Based on Land use Changes Using Multi Temporal Satellite Imagery and GIS: A Case Study on Zanjan, Iran (1984-2009), Proceedings of The Joint International Conference on Theory. Data Handling and Vodelling in Geo Spatial Information Science, Hong kong.
Al-Ahmadi F.,& Hames A., (2009). Comparison of four classification methods to extract land use and land cover from raw satellite images for some remote arid areas. kingdom of SaudiArabia. Earth, 20(1), 167-191.
Al-sharif, A. A., & Pradhan, B,. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS, Arabian Journal of Geosciences, 7(10), 4291-4301.
Arkhi, S., Yaghoub, N. (2010). Comparison of Different Land Use Change Monitoring Techniques-Vegetation Coverage Using RS and GIS (Case Study: Valley City-Ilam Province), Application of Remote Sensing and GIS in Natural Sciences.1(1), 61-78
Azar Mehr, M R., Mohammad, S. Mesgari & Karimi, M. (2010). Using Gis and CA Method in Simulation of Spatio-temporal Distribution of Malaria. Geomatics Conference. Tehran, Iran Mapping Organization.
Balzter, H. (2000). Markov chain models for vegetation dynamics, Ecological Modelling, 126(2), 139-154.
Bell, E.J. (1974). Markov analysis of land use change-an application of stochastic processes to remotely sensed data, Socio-Economic Planning Sciences, 8(6), 311-316.
Bonyad, A.A., & Haji ghaderi, T. (2007). Mapping of Natural Forest Stands of Zanjan Province Using Landsat 7 ETM+ sensor data. Journal of Science andTechnology of Agriculture and Natural Resources, 11(42), 627-638.
Chang CL,. & Chang JC. (2006). Markov model and cellular automata for vegetation. Journal of Geographical Research, 1(1), 45-57.
Eastman, J.R. (2006). IDRISI Andes guide to GIS and image processing. Clark University, Worcester, 328P.
Fatemi, S.B. and Rezaei, Y. (2012). Remote Sensing Basics, Azadeh Publications, 296 p.
Feizizadeh, B. (2017). Modeling the Trends of the Land Use/Cover Change and Its Impacts on the Erosion System of the Allavian Dam Based on the Remote Sensing and GIS Techniques, Hydrogeomorphology, 3(11), 21-38.
Ghorbani, R., Pourmohammadi, M.R., & Mahmoodzadeh, H. (2013). Environmental Approach to Modeling Land Use Changes in Tabriz Metropolitan Area Using Multi-temporal Satellite Images, Multi-Criteria Evaluation and Markov Chain Automated Cells(1984-2038), Urban Studies Quarterly, 2(8), 30-13.
HeidariZadi, Z. Mohammadi, A. (2016). Predicting the Land Use Change Using Markov- Cellular automata Model in Mehran Plain, Desert Ecosystem Engineering Journal, 5(10), 57-68.
Jafari, M., Majedi, H., Monavari, S.M., Alesheikh, A.A., & Zarkesh, M. K. (2016). Dynamic simulation of urban expansion through a CA-Markov model Case study: Hyrcanian region, Gilan, Iran. European Journal of Remote Sensing, 49(1), 513-529.
Kamusoko C., & Aniya M., (2007).Land use/cover change and landscape fragmentation analysis in the Bindura District, Zimbabwe, Land Degradation & Development 18(2), 221-233.
Karimi, K., & Komaki, Ch, B., (2015). Monitoring, assessment and prediction of spatial changes of land use /cover using Markov chain model (Case study: Bostagh Plain - South Khorasan). Journal of RS and GIS for natural resources, 6(2), 75-88.
Kaveh, N., & Ebrahimi, A. (2013). A Markov chain model for simulating land use/cover change (Case study: Aghbolagh river). Journal of Remote Sensing and GIS in Natural Resources Science, 4(2), 55-41.
Kelarestaghi A., & JafarianJeloudar Z., (2011). Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arabian Journal of Geosciences, 4(3), 401-411.
Khoi, D.D., & Murayama, Y. (2010). Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam, Remote Sens. 2(5), 1249-1272.
Khoshgoftar, M.M., & Talei,M. Malekpour, P. (2010). Temporal-Spatial Modeling of Urban Growth: A Method Based on Integration of Cellular Automata and Markov Chain. Geomatics Conference. Tehran, Iran Mapping Organization.
Kianisalmi, E., & Ebrahimi, A. (2018). Evaluation of change detection and future condition of meadow-land ecosystem of Shahrekord using Landsat data. Journal of Range and watershed management, 71(2). 473-487.
Lu D., Mausel P., Brondizio E., & Moran, E., (2004). Change detection techniques. Int.J.RemoteSens. 25(12), PP.2365-2401.
Lu, D. and Q. Weng, (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing. 28(5), PP.823–870.
Mas, J.F., Kolb, M., Paegelow, M., Olmedo, M.T.C., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94-111.
Nazari Samani A., Ghorbani, M., & Koh Banani, H R. (2010). Assessment of Land Use Changes in Taleghan Watershed during the Period of 1987 to 2001. Range Journal, 4(3), 451-442.
Nazarnejad, H., Hosseini, M., & Mostafaizadeh, R. (2019). Land Use Change Analysis of Balanjchai Watershed Using Landscape Measurements. Geography and Development, 17(54), 90-75.
Norris, J.R., & Norris, J.R. (1998). Markov chains (No.2). Cambridge University press.
Noureddine, M., Nisani Samani, N., & Toumanian, A. (2018). Tabriz Urban Growth Simulation Using CA-Markov Model and Multi-criteria Decision Making. Human Geography Research, 50(1), 231-217.
Parker, DC., Manson, SM,. Janssen, MA., Hoffmann, MJ., & Deadman P. (2003). Multi agent systems for the simulation of land use and land cover change: a Review, Annals of theAssociation of American Geographers, 93(2), 314-337.
Pijanowski, B.C., Brown, D.G., Shellito, B.A., & Manik, G.A. (2002). Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, environment and urban systems, 26(6), 553-575.
Pourhaqi, A., Akhund Ali, A M., Radmensh, F., & Mirzaei, S.Y. (2014). Management of Groundwater Resources Utilization in Drought Conditions Using MODFLOW Model (Case Study: Nourabad Plain). Irrigation Engineering Sciences, 37(2), 81-71.
Rafiee, R., Mahiny, A. & Khorasani, N. (2009). Assessment of changes in urban green spaces of Mashad city using satellite data. International Journal of Applied EarthObservation and Geoinformation. 11(6), 431-438.
Veldkamp, A., & Lambin, EF., (2001). Predicting land-use change. Agriculture, ecosystems & environment, 85(1), 1-6.
Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling, Journal of environmental management, 64(3), 273-284.
Wrighat, G.G. and J.G. Morrice, (1997). Landsat TM spectral information to enhance the land cover of Scotland 1988, Dataset. International Journal of Remote Sensing, 18(18), 3811-3834.