نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه حکیم سبزواری

2 استادیار گروه ژئومورفولوژی و اقلیم‌شناسی، دانشگاه حکیم سبزواری، سبزوار، ایران

3 دانشجوی دکتری ژئومورفولوژی، دانشگاه حکیم سبزواری، سبزوار، ایران

4 دانشیار گروه ژئوموفولوژی و اقلیم‌شناسی، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

چکیده
گردآوری اطلاعات در مورد تغییرات پیوسته سطوح آبی و همچنین پوشش گیاهی توسط روش­های معمولی بسیار مشکل و پرهزینه است، در این حالت استفاده از داده‌های ماهواره­ای امکان مطالعه­ی گسترده سطوح آبی و پوشش گیاهی را فرام می­سازد. با استفاده از ویژگی تکراری بودن داده­های دورسنجی زمان­های مختلف، امکان شناسایی و بررسی پدیده­های متغیر و پویا در محیط وجود دارد. بر این اساس روش­های رقومی مختلفی جهت آشکارسازی و کشف تغییرات و تحولات پدیده­های سطح زمین در سنجش از دور توسعه داده شده است. هدف از این تحقیق ارزیابی 6 شاخص گیاهی در بررسی تغییرات دریاچه­ی پریشان می‌باشد. سطح تغییرات دریاچه در طی دوره‌های 1989 تا 2004 در شاخص­های مختلف و الگوریتم طراحی شده در محیط نرم‌افزار ENVI مورد ارزیابی و استخراج قرار گرفت. مرز دریاچه با استفاده از شاخص‌های فوق­الذکر استخراج گردید و سطح تغییرات دریاچه طی دوره­ی زمانی مورد مطالعه به دست آمد. نتایج نشان می­دهد که شاخص NDMI ناتوان از استخراج سطح آب دریاچه­ی پریشان بود (با کمترین میزان دقت کلی و ضریب کاپا)، شاخص NDMI به دلیل حساسیت بیش از حد به مناطق آبی، زمین­های مرطوب کشاورزی را هم جزء محدوده­ی دریاچه به حساب آورده بود. در حالی که شاخص  NDWI و شاخص NDVI بالاترین نتایج دقت ارائه شده است.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

Monitoring the Disturbance of Lake District Water Level Changes Using Remote Sensing Indices

نویسندگان [English]

  • maryam khosravian 1
  • AliReza Entezari 2
  • Abolfazl Rahmani 3
  • Mohmmad Baaghide 4

1 Ph.D student in hakim sabzevari university

2 - Assistant Professor of Geomorphology and Climatology, Hakim Sabzevari University, Sabzevar, Iran

3 - Ph.D. Candidate of Geomorphology, Hakim Sabzevari University, Sabzevar, Iran

4 Associate Professor, Department of Geomorphology and Climatology, Hakim Sabzevari University, Sabzevar, Iran

چکیده [English]

Expanded Abstract
Introduction
It is very difficult and costly to collect information about the continuous changes of vegetation by conventional methods. With the development of the satellite technology, the satellite imagery has provided extensive access to information about ground sources. The detection of changes is one of the main factors in the study of the relationship between human activities and the environment. Most remote sensing products are used to evaluate and estimate the bio facial and biochemical parameters of plants from broad bands such as NOAA, AVHRR, SPOT, and TM / ETM. Landsat sensors often consist of three to seven bands. Vegetation indicators are mathematical transformations that are defined based on different gauges of the sensors and designed to evaluate and investigate plants in multi-spectral satellite observations. Lake Parishan Basin is located in Fars Province (Kazeroun city). In recent years, many environmental and human factors have had an adverse effect on its ecosystem. The interference of the agricultural lands with the marginal lands of this lake, the disposal of chemical fertilizers, the flow of pesticides from plant pests to the lake, burning of grasslands, and bogs of the surrounding countryside by profitable individuals in order to expand agricultural lands, are factors that affect its ecosystem. The purpose of this study was to investigate Lake level changes between the years 1989 and 2004.
Materials and Methods
Lake Parishan Basin is located in the geographic coordinates of 29˚ 25ˊ 12˝ to 29˚ 36ˊ 15˝ north latitude and 51˚ 40ˊ 50˝ to 51˚ 48ˊ 20˝ east longitude in Kazeroon, Fars Province. In this study, multispectral sensor data was used to investigate the changes in the lake level. Landsat ETM + 1: 50000 satellite and digital elevation data were used to carry out atmospheric and geometric corrections on satellite data. The Satellite data was interpreted and processed in ENVI 4.1 software and performed in ARC GIS 9.3 Cartographic Mapping Software. The datasets of this study were from Landsat satellite imagery of 1989 and 2004. There has been a very intense occurrence since 2004. The process of drying the lake so that nothing remains in 2007 can be checked using remote sensing techniques. The data processing process was carried out in three stages of pre-processing, processing, and post-processing. Regarding the necessity of geometric correction in detecting water level changes, the topographic maps of 1: 50000 and GPS-controlled points were collected. Using the reference grounding function in the PCI-Geomatica software environment on each image, the control points were made. The pixels were re-evaluated using the nearest neighbor method. In addition, images with an error of 0.39 and 0.42 RMS were correlated.
 
 
Results and Discussion
Different indices (SAVI), (NDWI), (NDMI), (MNDWI), (NDVI), and (AWEI) were separately extracted in order to identify distorted lake changes in the period of 1989-2008.The detection and identification of water level was done to study the relevant indicators of water level changes. The level of lake changes between the years 1989 and 2004 was evaluated and extracted in various indices. In addition, an algorithm was designed in ENVI software environment. The results showed that it was incapable of extracting the surface water of the lake. The NDMI index (with the lowest overall accuracy and kappa coefficient) was also considered due to its excessive sensitivity to blue areas.
Conclusion
The changes in the water level of the distressed lake using vegetation and water indices during the period of 1984-2008 were investigated. The results of this study showed that the normalized dispersion index (NDMI) with the lowest overall accuracy and kappa coefficient was unable to extract water from the surface, while the NDWI had the highest accuracy for the extraction of lake water level changes. Accordingly, the Normed Water Difference Index (NDWI) was used to model the spatial and temporal changes in the level of the disturbing lake in the period of 1989-2008. The results of this study also indicated that the decline in the lake water level between 2000 and 2004 was 19,160 m2. Moreover, the decline between 1989 and 1991 and between 1991 and 2000 were respectively 1344010 m2 and 1313000 m2. It was also estimated that the total changes in the water level of the lake amounted to 1494470 m2 between 1989 and 2004.

کلیدواژه‌ها [English]

  • Keywords: Satellite technology
  • Satellite imagery
  • See level changes
  • Parishan lake
منابع
ـ ثقفی، مهدی، و حمید علیزاده (1387)، ارزیابی اثرات مسئله­ی بحران آب بر توسعه­ی سکونتگاههای روستائی با استفاده از GIS (منطقه­ی مورد مطالعه: دریاچه­ی پریشان، اولین کنفرانس بین­المللی بحران آب، اسفند، دانشگاه زابل، صص20-22.
ـ خواجه­الدین، سیدجواد (1376)، نقش سنجش از دور در توسعه کشاورزی و منایع طبیعی پایدار و استفاده از این داده در برنامه­ریزی کشاورزی صنعت، مجموعه مقالات سمینار نقش صنعت در توسعه­ی کشاورزی، انتشارات شهرک علمی و تحقیقاتی با همکاری انتشارات مانی، اصفهان.
ـ عبادی، عباس و ابراهیم گلزار (1395)،بررسی تغییرات کمی تالاب پریشان با استفاده از سنجش از دور، یازدهمین همایش ملی علوم و مهندسی آبخیزداری ایران، 31 فروردین لغایت 2 اردیبهشت 1395، تهران، صص 641-633.
ـ علوی­پناه، سیدکاظم؛ رفیعی­امام، عمار؛ حسینی، زین­العابدین و منصورجعفر بیگلو (1385)، بررسی تغییرپذیری طیفی پدیده­های مختلف پوشش گیاهی و آب با استفاده از سنجش از دور، مجله­ی­ پژوهش­های جغرافیائی، شماره­ی 58، صص 81-97.
ـ یمانی، مجتبی و احمد مزیدی (1385)، بررسی تغییرات سطح و پوشش گیاهی کویر سیاهکوه با استفاده از داده‌های سنجش از دور، مجله­ی پژوهش­های جغرافیایی شماره­ی 64، صص 1-12.
-Elvidge, C.D., and Chen, Z., (1995), Comparison of broad-band and narrow-band red and near-infrared vegetation indices, Remote Sensing of Environment, 54(1), PP.38-48.
-Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R., (2014), Auto mated water extraction index: A new technique for surface water mapping using Landsat imagery, Remote Sens, Environ, 140, PP.23–35.
-Gong, P., Pu, R., Biging, G.S., and Larrieu, M.R., (2003), Estimation of forest leaf area index using vegetation indices derived from Hyperion hyper spectral data, IEEE Transactions on Geoscience and Remote Sensing, 40, PP.1355-1362.
-Goward, S.,N.,G.,D., Cruickshanks, and A.,S., Hope (1985), Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape, Remote Sensig of Environment, 18, PP.137-146.
-Goward, S.N., Xue, Y., and Czajkowski, K.P., (2000), Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements an exploration with the simplified simple biosphere model, Remote Sensing of Environment, 79, PP.225– 242.
-Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., and Strachan, I.B., (2004), Hyper spectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, Remote Sensing of Environment, 90, PP.337-352.
-Hoersch, B.G., Braun and U., Schmidt., (2002), Relation between landform and vegetation in alpine regions of Wallis, Switzerland, A multiscale remote sensing and GIS approach, Computers, Environment & Urban Systems, 26, PP.113-139.
-Huete, A.R. (1988), A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 25(3), PP.295-309.
-Jiang, J., Tian, G. (2010), Analysis of the impact of land use/land cover hange on land surface temperature with remote sensing, Procedia Environ, Sci., 2, PP.571–575.
-Kurt, S., Karaburun, A, and Demirci, A. (2010), Coastline changes in Istanbul between 1987 and 2007, Scientific Research and Essays, Vol.5 (19), PP. 3009-3017.
-McFeeters, S.K., (1996), The use of normalized difference water index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, 17(7), PP.1425–1432.
-Prashant K., Srivastava, Dawei Han, Miguel A., Rico-Ramirez, Michaela Bray,Tanvir Islam, (2012), Selection of Classification Techniques For Land Use/Land Cover Change Investigation, Advances in Space Research, 50, PP.1250–1265.
-Rondeaux, G., M.Steven, & F., Baret. (1996), Optimization of soil-adjusted vegetation indices,Remote Sensing of Environment, 55, PP.98-107.
-Wilson, E.H., Sader, S.A. (2002), Detection of forest harvest type using multiple dates of Landsat TM imagery, Remote Sens, Environ, 80, PP.385–396.
-Xu, H., (2006), Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens, 27, PP.3025–3033.