نوع مقاله : پژوهشی

نویسندگان

1 دانشیار، گروه جغرافیا، دانشگاه پیام نور، تهران، ایران.

2 عضو هیات علمی پژوهشکده حفاظت خاک و آبخیزداری-ایلام

چکیده

چکیده
سیل یکی از انواع بلایای طبیعی می­باشد که همه ساله خسارات زیان­باری را در سراسر جهان و از جمله ایران به وجود می­آورد. بنابراین، شناسایی این پدیده و پارامترهای موثر در وقوع سیل­خیزی در حوضه­های آبریز ضرورتی اجتناب­ناپذیر است. پژوهش حاضر در صدد ارائه روشی برای پهنه­بندی پتانسیل سیل­خیزی در حوضه­ی آبریز میشخاص در ایلام می­باشد. در این تحقیق حوضه­ی آبریز میشخاص در استان ایلام به 12 زیرحوضه تقسیم و برای هر زیرحوضه 28 پارامتر ژئومتری، اقلیمی، نفوذپذیری و فیزیوگرافی مانند؛ مساحت، محیط، طول و شیب آبراهه­ی اصلی، طول و شیب حوضه، زمان تمرکز، ضریب شکل و متغیر بارش، تاج پوشش گیاهی ،CN و دبی با استفاده از نرم­افزار ArcGIS محاسبه شد. برای تعیین شدت سیل­خیزی زیرحوضه­ها از روش آماری تحلیل عاملی- خوشه­ای استفاده و داده­های 28 متغیر زیرحوضه­ها توسط نرم­افزار SPSS پردازش و در قالب 5 عامل اصلی (شکل، آبراهه، شیب، زهکشی و رواناب) خلاصه شد. نتایج این پژوهش نشان داد که عامل شکل با مقدار ویژه 64/7 مهم­ترین عامل در سیل­خیزی حوضه­ی مورد مطالعه است، عوامل آبراهه، شیب، زهکشی و رواناب بـه ترتیب با مـقدار ویژه 65/4، 56/2،75/1 و 61/1 در رتبه­های بعدی قرار دارند. در ادامه، حوضه­ی مورد مطالعه بر اساس امتیاز عاملی به 3 طبقه­ی سیل­خیزی زیاد، متوسط و کم تقسیم و نقشه­ی پهنه­بندی شدت سیل­خیزی زیرحوضه­ها ترسیم شد. زیرحوضه­های (9،8،5،3) در عامل شکل، زیرحوضه­های (1،6،11) در عامل شیب، زیرحوضه­های (2، 7) در عامل زهکشی و در عامل رواناب نیز زیرحوضه­های (4،10،12) دارای شدت سیل­خیزی زیادی هستند. زیرحوضه­ها از نظر مشابهت پتانسیل سیل­خیزی، فرسایش، پوشش گیاهی و تأثیرات عملکرد انسانی نیز به 3 گروه با شدت سیل­خیزی زیاد، متوسط و کم تفکیک شده­اند.

کلیدواژه‌ها

عنوان مقاله [English]

Flood Hazard Intensity Zoning in Myshkhas Watershed Using Factor- Cluster Analysis

نویسندگان [English]

  • Amir Hossein Halabian 1
  • shamsolah Asgari 2

1 Associate Professor, Geography Department, Payame Noor University, Tehran. Iran

2 Scientific Member of Agriculture & Natural Resources Reserch Center of Ilam Provience, Iran

چکیده [English]

Extent Abstract
Introduction
One way to decrease flood damage is to zone the potential of flood in watersheds. In other words, separating the flooding areas and determining the effective factors in flooding can play a special role in preparing a suitable medium and long term policy making for optimal exploitation of lands. Some of the studies which were based on zoning the potential of flooding worldwide and Iran includes Hawkins (1979), James et al. (1980), Bales et al. (1981), Enayat Rasoul et al. (1994), Suwanwerakamator (1994), Singh (1997), Francisco et al. (1998), Stephen (2002), Sinnakaudan et al. (2003), Sanyal and Lu (2004), Levy (2005), Meyer et al. (2009), Cook et al. (2009), Qin et al. (2011), Bakhtyari Kia et al. (2011), Al-Ghamdi et al. (2012), Ismail et al. (2013), Demir and Kisi (2016); in Iran: Qaemi and Morid (1375), Qanavati and Farajzadeh (1379), Abdi and Rasouli (1380), Omidvar et al. (1389), Malekian et al. (1391), Lajevardi et al. (1392), Nasrinnejad et al. (1393). In this research,  Mishkhas watershed was studied in terms of flooding potential using multivariate statistical methods of factor and cluster analysis and geographical information system (GIS).  Finally, the watershedflooding map was drawn in three classes of low, moderate and high.  Zoning the flooding potential in this watershed can help reduce the damage caused by this natural hazard. Such studies can be a basis for future planning of regional and local developments.
 Methodology
One of the appropriate criteria for understanding the potential of flooding in basins is classifying them according to geometry, physiography, permeability, and climatic criteria. In this study, the topography maps of geographic organization (1:50000), and the geological map of vegetation (1:250000), land use, soil maps of Ilam province (1392), precipitation data, and multivariate statistical methods of factor and cluster analysis have been used. In this research, Mishkhas watershed was divided into 12 sub-watersheds and their flooding intensity was classified into 3 classes.  According to the aim of the research, the maximum instant debit, daily precipitation, and the date of watershed floods during the statistical period were selected. In addition, the effective criteria in watershed flooding was calculated using ArcGIS software including geometry, physiography, permeability, and climatic parameters for Mishkhas sub-watersheds. Then, they were analyzed using factor analysis and 28 parameters were summarized in the form of 5 main factors (form, stream, slope, drainage, and runoff). Finally, the intensity of the sub-watersheds' flooding were c 3 high, moderate, and low classes according to the mentioned criteria.
Discussion
In this research, the total criteria which were used were operating by a type R factor analysis.
The results of this research decreased 28 initial criteria to 5 superior factors including (1) form, (2) stream, (3) slope, (4) drainage, and (5) runoff. According to calculations done on the criteria in the first factor, sub-watersheds 1, 2, 3, 5, 9, 11, and 12 with the highest flooding, sub-watersheds 6, 8, 10 with moderate flooding and sub-watersheds 4 and 7 with the lowest flooding intensity were identified. The first factor indicated the reverse relationship between the watershed's form and flooding intensity. That is, the more its length and area, the less its flooding intensity.
In the second factor (stream) it was specified that sub-watersheds 1, 10, 3, and 12 have high flooding, sub-watersheds 7, 8, 5, 2, and 9 have moderate flooding, and sub-watersheds 11, 4, and 6 have low flooding. It was also indicated a reverse relationship between stream density and flooding intensity. In the third factor (slope), it was specified that sub-watersheds 6, 5, 1, 9, 10, and 11 have high flooding intensity, sub-watersheds 2, 4, and 8 have moderate flooding intensity, and sub-watersheds 7 and 12 have low flooding intensity. The sub-watersheds with high flooding intensity are located in northeastern and eastern parts of the basin which are mostly mountainous and have high height difference and slope. Sub-watersheds with low flooding intensity have little height difference, low slope, and relatively suitable vegetation. The calculations done on the fourth factor (drainage) indicated that sub-watersheds 12, 7, 4, and 2 have high flooding intensity, sub-watersheds 5, 6, 10, and 11 have moderate flooding predisposition, and sub-watersheds 1, 3, 8, and 9 have low flooding predisposition. Sub-watersheds with high flooding have been operated as the main drain of watershed. The results indicated that 33% of sub-watersheds have high flooding in terms of drainage factor. According to calculations done on the fifth factor (runoff) sub-watersheds 12, 3, 4, and 5 have high flooding intensity, sub-watersheds 1, 2, 6, and 8 have moderate flooding intensity and, sub-watersheds 7, 9, 10, and 11 have low flooding intensity. According to the factor's score, Mishkhas watershed is divided into three high, moderate, and low flooding classes and the zoning map of sub-watersheds' flooding intensity has been prepared.
 
Conclusion
In this research, factor analysis and cluster analysis were used for studying the flooding intensity of Mishkhas watershed and the role of sub-watersheds in flooding of this area. According to factor analysis results, 28 initial criteria reduced to 5 factors including form, stream, slope, drainage, and runoff. Analyzing the factors indicated that sub-watersheds 3, 5, 8, and 9 in form factor, sub-watersheds 1, 6, and 11 in slope factor, sub-watersheds 2 and 7 in drainage factor, and sub-watersheds 4, 12, and 10 in runoff factor have extra flood hazard intensity. Sub-watersheds were divided into 3 groups including high, moderate, and low flood producing based on the similarity of flooding intensity, erosion, vegetation, and human activities. For separating the sub-watersheds in homogenous groups, three homogenous groups were identified after data standardization by a standard model and applying Euclidean distance and Ward method. The first group's sub-watersheds 1, 2, 3, 4, 5, and 6 have high power to produce run off because of having high height and slope, low vegetation and permeability, and high flooding capacity. The second group's sub-watersheds 7, 8, 11, and 12 have high power to produce runoff, because of high slope, low vegetation, high height, low permeability, and high flooding power. In the third group's sub-watersheds 9 and 10, the flow was decreased because of decreasing the slope and increasing the permeability, so they indicated lower power to produce runoff. In fact, sub-watersheds play fundamental roles in flooding of this watershed that affect large downstream agricultural lands.

کلیدواژه‌ها [English]

  • Flood
  • Criterion
  • Climate
  • Varimax rotation
  • Myshkhas
منابع
ـ امیدوار، کمال؛ کیانفر، آمنه و شمس­الله عسگری (1389)، پهنه­بندیپتانسیلسیل­خیزیحوضه­یآبریزکنجانچم، پژوهش­های جغرافیای طبیعی، شماره­ی 72، صص 90-72.
عبدی، پرویز، رسولی، مسعود(1384)، پهنه­بندی پتانسیل سیل­خیزی حوضه آبریز زنجان رود با استفاده از ­GIS، مجموعه مقالات همایش شناخت معضلات آبخیزداری و ارائه­ی راه­­حل­های مناسب درحوضه­ی کارون و زاینده رود، مرکز تحقیقات منابع طبیعی و امور دام استان چهارمحال و بختیاری، ص 42.
ـ علیجانی، بهلول (1381)، اقلیم­شناسی سینوپتیک، انتشارات سمت، تهران، ص 275.
ـ قائمی، هوشنگ و سعید مرید (1375)، مدلسیل­خیزیزیرحوضه­هایکرخه، نیوار، شماره­ی 30 ، صص 27-10.
ـ قنواتی، عزت­الله و منوچهر فرج­زاده (1379)، چگونگی استفاده از روش تحلیل عاملی در ناحیه­بندی فیزیوگرافیکحوضه­هایآبریز (مطالعه­ی موردی حوضه رودخانه­های زهره و خیرآباد)، مجله­ی دانشکده­ی ادبیات و علوم انسانی دانشگاه تربیت معلم، شماره­ی 30، صص68-55.
ـ کلانتری، خلیل (1382)، پردازش و تحلیلداده­ها در تحقیقات اجتماعی- اقتصادی با استفاده از نرم افزار رایانه­ایSPSS ، انتشارات نشر شریف، تهران، ص 281.
ـ لاجوردی، محمود؛ خالدی، شهریار و شاپور سـتاری (1392)، پـهنه­بندی پتانسیلسیل­خیزیحوضهآبریزمردق­چای(آذربایجانشرقی)، جغرافیا و برنامه­ریزی، شماره­ی 44، صص 255-237.
ـ مسعودیان، سیدابوالفضل (1384)، پیش­بینی و برآورد سیلاب در استان چهارمحال و بختیاری، طرح پژوهشی، استانداری چهار محال و بختیاری.
ـ ملکیان، آرش؛ افتادگان­خوزانی، اصغر و غدیر عشورنژاد (1391)، پهنه­بندیپتانسیل سیل­خیزیحوضه­یآبخیزاخترآبادبااستفادهاز روشتحلیلسلسله­مراتبفازی، پژوهش­های جغرافیای طبیعی، شماره­ی 44، صص 152-131.
ـ نسرین­نژاد، نعمت­اله؛ رنگزن، کاظم؛ کلانتری، نصرالله و عظیم صابری (1393)، پهنه بندی پتانسیل سیل­خیزی حوضه­ی آبریز باغان با استفاده از روش تحلیل سلسله مراتبی فازی (FAHP سنجش از دور و سامانه­ی اطلاعات جغرافیایی در منابع طبیعی، شماره­ی 4، صص 34-15.
-Al-Ghamdi K, Mirza M, El Zahrany R., (2012), GIS evaluation of urban growth and flood hazards: a case study of Makkah city, Saudi Arabia, TS07D-GIS Applications, 5479. FIG Working Week, Knowing to manage the territory, protect the environment, evaluate the cultural heritage, Rome, Italy, P. 24.
-Armenakis C, Nirupama N., (2014), Flood risk mapping for the city of Toronto, Procedia Economics and Finance, No.18, PP. 320-326.
-Bakhtyari Kia M, Pirasteh S, Pradhan B, Mahmud A, Sulaiman W, Moradi A.,(2012), An artificial neural network model for flood simulation using GIS: Johor river basin, Malaysia, Journal of Environ Earth Sciences, 2012, No. 67(1), PP.251-264
-Bales J, Beston RP., (1981), The Curve Number ASA hydrologic index, Proceedings of International Symposium on rain fall – Runoff hydrologic Modeling Mississippi, State University, PP.371-386.
-Cook A, Venkatesh M., (2009), Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping, Journal of Hydrology, No. 337, PP.131-142.
-Demir, V., Kisi, O., (2016), Flood hazard mapping by using geographic information system and hydraulic model: Mert river, Samsun, Turkey, Advanced in Meteorology, ID 4891015, PP.1-9.
-Enayate Rasul AZ, Fazle Rabbi M, Mustafa Kamal M., (1994), GIS in Flood mapping for important flood management in Bangladesh, Hydro-informatics, No.94, PP. 629-634.
-Francisco, NC., Rego, FC., Gracasaraiva, MD., Ramos, I. (1998), Coupling GIS with hydrologic and hydrolic flood modeling management, Water resources management, No.12, PP.229-249.
-Hawkins, RH. (1979), Runoff curve number with varying site moisture, Journal of Irrigation and Drainage Division, American Society of Civil Engineers, No. 104(IR4), PP.389-398.
-Isma'il, M., Saanyol, IO. (2013), Application ofremote sensing (RS) and geographic informationsystems (GIS) in flood vulnerability mapping: casestudy of river Kaduna, International Journal of Geomatics and Geosciences, No. 3(3), PP.618-627.
-James, LD., Larson, DT., Hoggan, DH., Glover, TF. (1980), Flood plain management needs peculiar to arid climates, Water Resources Bulletin, No.16(6), Elsevier Science Ltd.
-Levy, JK. (2005), Multiple criteria decision making and decision support systems for flood risk management, Journal of Stochastic Environmental Research and Risk Assessment, No.19, PP.438-447.
-Meyer, V., Scheuer, S., Haase, D. (2009), A multi-criteria approach for flood risk mapping exemplified at the Mulde river, Germany, Natural Hazards, No.48(1), PP.17-39.
-Qin, Q., Tang, H., Chen, H. (2011), Zoning of highway flood-triggering environment for highway in fuling district, Chongqing, Journal of the International Society for Optical Engineering, No. 8205, PP. 820530-8.
-Sanyal, J., Lu, X. (2004), Application of remote sensing in flood management with special reference to Monsoon Asia: A review, Journal of Natural Hazards, No. 33, PP. 283-301.
-Singh VP., (1997), Effect of spatial and temporal variability on stream flow hydrograph, Kinematic wave modeling in water resources, 1st ed. JOHN WILEY & SONS, INC, PP.788-820.
-Sinha R, Bapalu G, Singh L, Rath B., (2008), Flood risk analysis in the Kosi river basin, North Bihar using multi-parametric approach of analytical hierarchy process (AHP), Journal of Indian Soc, Remote Sens, No. 36, PP.335-349.
-Sinnakaudan, SK., Ghani, AA., Ahmad, SS., Zakria, N.A. (2003), Flood risk mapping for Pari River incorporating sediment transport, Environmental Modeling and Soft ware, No. 18, PP.119-130.
-Stephen, R. (2002), Hydrologic investigation by the U.S. geological survey following, the 1996 and 1997 floods in the upper Yellowstone River, Montana, American Water Resources Association. 19'Annual Montana section Meeting, section one, PP.1-18.
-Suwanwerakamtorn, R. (1994), GIS and hydrologic modeling for management of small watersheds, ITC Journal, No. 4, PP.343.