Attar, N.F., Sattari, M.T. & Apaydin, H. A. (2024). Novel stochastic tree model for daily streamflow prediction based on a noise suppression hybridization algorithm and efficient uncertainty quantification. Water Resources Management, 38, 1943–1964.
https://doi.org/10.1007/s11269-023-03688-6.
Bahrami A.R. & Asil Gharebaghi, S. (2023). Improved noise reduction method for chaotic time series using neural network and singular spectrum analysis, Modares Mechanical Engineering, 24 (1), 53-63. https://doi.org/
10.22034/MME.24.1.53.
Boustani, M., Farzin, S., Mousavi, S.F. & Karami, H. (2019). Effect of denoise reduction of time series on its analysis using Chaos theory (case study: Zayandehrud river), Eco Hydrology, 6(1), 15-27. https://doi.org/
10.22059/ije.2018.260455.906.
Daneshvar Vousoughi, F. and Samadzadeh, R. (2021). Predicting runoff with pre-processing approaches in Ardabil plain. Journal of Hydrogeomorphology, 8(26), 116-99. doi:
10.22034/hyd.2021.44060.1570.
Davaie Markazi, A.H. & Nazarahari, M. (2015). Application of DWT for acoustic signal identification of ship using feature extraction methods and ensemble learning, Modares Mechanical Engineering, 15(8), 75-84. https://doi.org/
20.1001.1.10275940.1394.15.8.10.0.
Guo, S., Wen, Y., Zhang, X. & Chen, H. (2023). Runoff prediction of lower Yellow river based on CEEMDAN–LSSVM–GM (1, 1) model. Scientific Reports, 13(1), 1511. https://doi.org/
10.1038/s41598-023-28662-5.
Karunasingha, D.S.K. & Liong, S.Y. (2018). Enhancement of chaotic hydrological time series prediction with real-time noise reduction using Extended Kalman Filter, Journal of Hydrology, 565, 737-746.
https://doi.org/10.1016/j.jhydrol.2018.08.044.
Kazemzadeh, M., Malekian, A., Moghaddamnia, A. R. & Khalighi Sigaroudi, Sh. (2017). Shift changes and heterogeneity analysis of hydro-climate variables (a case study: Aji Chai watershed), Eco Hydrology, 4(1), 163-175. https://doi.org/
10.22059/ije.2017.60899.
Malekani, L. (2020). Reduced chaotic noise to improve the accuracy of estimates of monthly flow (case study: Nahandchai, Aharchai and Lighvanchai Rivers), Journal of Irrigation and Water Engineering, 11(1), 89-103. https://doi.org/10.22125/iwe.2020.114955.
Meng, J., Wang, Y., Guo, H., & Ding, Y. (2023). Application of Wavelet Denoising Algorithm in Monthly Runoff Series of Fuchun River Hydropower Station. International Seminar on Computer Science and Engineering Technology (SCSET) 719-723. https://doi.org/
10.1109/SCSET58950.2023.00162.
Nourani, V., Andalib, G., & Sadikoglu, F. (2017). Multi-station streamflow forecasting using wavelet denoising and artificial intelligence models. Procedia Computer Science, 120, 617-624.
Partovyan, A., Nourani, V. & Alami, M.T. (2018). Noise injection-denoising techniques to improve artificial intelligence-based rainfall runoff modelling, Water Resource Engineering, 11(36), 81-94. https://doi.org/
20.1001.1.20086377.1397.11.36.8.9.
Wang, Y. Y., Wang, W. C., Xu, D. M., Zhao, Y. W., & Zang, H. F. (2024). A compound approach for ten-day runoff prediction by coupling wavelet denoising, attention mechanism, and LSTM based on GPU parallel acceleration technology. Earth Science Informatics, 17(2), 1281-1299.
https://doi.org/10.1007/s12145-023-01212-3.
Xiao, H., Hu, D. & Wang, J. (2022). Threshold selection of wavelet denoising based on optimization algorithms, International Conference on Innovations and Development of Information Technologies and Robotics (IDITR), Chengdu, China, 2022, pp. 88-92. https://doi.org/
10.1109/IDITR54676.2022.9796485.
Yahyavi Rahimi, A. (2013). Using the threshod method to obtain error-free input in runoff sediment modelling using the artificial neural network model method, MSc in Water Engineering, Faculty of civil Engineering, University of Tabriz.
Yang, Y., Li, W., & Liu, D. (2024). Monthly Runoff Prediction for Xijiang River via Gated Recurrent Unit, Discrete Wavelet Transform, and Variational Modal Decomposition. Water, 16(11), 1552.
https://doi.org/10.3390/w16111552.
Zerouali, B., Al-Ansari, N., Chettih, M., Mohamed, M., Abda, Z., Santos, C. A. G., & Elbeltagi, A. (2021). An enhanced innovative triangular trend analysis of rainfall based on a spectral approach. Water, 13(5), 727.
https://doi.org/10.3390/w13050727.