تهیه نقشه خطر وقوع زمین‌لغزش با استفاده از روش تصمیم گیری چندمعیاره و GIS مطالعه موردی: حوضه مهران‌رود، ایران

نوع مقاله : پژوهشی

نویسندگان

1 پژوهشگرپسا دکتری ،گروه ژئومورفولوژی، دانشکده برنامه ریزی و علوم محیطی، دانشگاه تبریز

2 استادگروه ژئومورفولوژی، دانشکده برنامه ریزی و علوم محیطی، دانشگاه تبریز

چکیده

زمین‌لغزش‌ها سالانه باعث آسیب‌های قابل توجهی به مناطق مسکونی و محیط‌زیست، از جمله جنگل‌ها و مزارع می‌شوند. این مخاطره در ایران اهمیت ویژه‌ای دارد، چون بخش زیادی از کشور، به‌ویژه نواحی شمالی، کوهستانی است. این تحقیق با هدف تهیه نقشه خطر وقوع زمین‌لغزش در حوضه آبریز مهران‌رود، واقع در شمال غربی ایران، انجام شده است. برای دستیابی به این هدف، لایه‌های اطلاعاتی مرتبط با ۸ عامل مؤثر در وقوع زمین‌لغزش، شامل زمین‌شناسی، کاربری اراضی، شیب، جهت شیب، طبقات ارتفاعی، بارش، فاصله از رودخانه و فاصله از گسل، در محیط نرم‌افزار ArcGIS تهیه شدند. سپس، وزن‌دهی این عوامل با استفاده از روش فرآیند تحلیل شبکه‌ای (ANP) در نرم‌افزار Super Decisions انجام شد. نتایج تحقیق نشان داد که وزن‌های این هشت عامل به ترتیب 331/0، 080/0، 117/0، 036/0، 055/0، 233/0، 112/0 و 032/0 هستند. در نهایت، نقشه پهنه‌بندی خطر زمین‌لغزش با ادغام لایه‌های وزندار تهیه شد که حوضه مورد مطالعه را به پنج کلاس خطر شامل مناطق با پتانسیل خیلی زیاد (21 کیلومترمربع)، زیاد (134 کیلومترمربع)، متوسط (94 کیلومترمربع)، کم (60 کیلومترمربع) و خیلی کم (51 کیلومترمربع) تقسیم می‌کند. مناطق با پتانسیل زیاد بیشترین مساحت حوضه را پوشش می‌دهند. مقایسه نقشه پهنه‌بندی با نقاط پراکنده زمین‌لغزش که از بررسی تصاویر ماهواره‌ای و فعالیت‌های میدانی به‌دست آمده‌اند، نشان می‌دهد که 7/85 درصد از زمین‌لغزش‌ها در مناطق با پتانسیل بالا و بسیار بالا رخ داده‌اند. بر اساس نتایج به‌دست‌آمده، لازم است در سیاست‌گذاری‌های محیطی، اقدامات لازم برای مدیریت این پدیده و کاهش پیامدهای انسانی و مالی آن در مناطق حساس در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

GIS-based MCDM Approach for Landslide Susceptibility Hazard Mapping (Case study: Mehran Roud Basin, Iran

نویسندگان [English]

  • Tohid Rahimpour 1
  • Mohammad Hossein Rezaei Moghaddam 2
1 Postdoctoral Researcher, Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz
2 Professor, Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz
چکیده [English]

Landslide is one of the destructive hazards that causes much damage to residential zones and natural resources such as forests and farmlands every year. This phenomenon is noticeable in Iran because most of the areas in this country are mountainous, especially in the northern parts. This study determined susceptible zones with landslide incidence potential in the Mehran Roud basin, located in the northwestern part of Iran. For achieving this aim, the information layers related to 8 factors that are effective in landslide incidence, including Geology, land use, slope, aspect, elevation classes, precipitation, distance to stream, and distance to fault, were prepared under the ArcGIS platform. Then, rating the factors was done using the analytic network process (ANP) method in the Super Decisions software. The study results showed that the weights of the mentioned eight factors are 0.331, 0.080, 0.117, 0.036, 0.055, 0.233, 0.112, and 0.032, respectively. Finally, landslide susceptibility zonation map was obtained by integrating weighted layers in GIS software. The zonation map divides the basin in terms of landslide occurrence into five classes, including very high susceptibility (21 km2), high (134 km2), moderate susceptibility (94 km2), low (60 km2), and very low susceptibility (51 km2), which high susceptibility areas cover the largest area of the basin. A comparison between the zonation map and the scattered landslide points obtained from field activities shows that 85.7% of the landslides have occurred in high and very high susceptibility zones.

کلیدواژه‌ها [English]

  • Landslide
  • Analytic Network Process
  • Super Decisions
  • GIS
  • Mehran Roud Basin
Alijane, B. (2000). Climatology of Iran; Tehran. Tehran University of Paym-E-Noor. (In Persian).
Anis, Z., Wissem, G., Vali, V., Smida, H., Mohamed Essghaier, G. (2019). GIS-based landslide susceptibility mapping using bivariate statistical methods in North-western Tunisia, Open Geosciences, 11: 708-726, https://doi.org/10.1515/geo-2019-0056.
Ayalew, L., Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65(1–2): 15–31, https://doi.org/10.1016/j.geomorph.2004.06.010.
Bai, S., Lu, G., Wang, J., Zhou, P., Ding, L. (2011). GIS based rare events logistic regression for landslide susceptibility mapping of Lianyungang, China, Environ. Earth Sci, 62: 139–149.
Bui, D.T., Lofman, O., Revhaug, I., Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression, Nat Hazards. 59: 1413–1444, https://doi.org/10.1007/s11069-011-9844-2.
Carrara, A., Cardinali, M., Guzzetti, F., Reichenbach, P. (1995). GIS technology in mapping landslide hazard; Geographical Information Systems in Assessing Natural Hazards, Advances in Natural and Technological Hazards Research, 5: 135–175, https://doi.org/10.1007/978-94-015-8404-3_8.
Dai, F.C., Lee, C.F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42(3–4): 213–228, https://doi.org/10.1016/S0169-555X(01)00087-3.
Ermini, L., Catani, F., Casagli, N. (2005). Artificial Neural Networks applied to landslide susceptibility assessment, Geomorphology, 66(1-4): 327–343, https://doi.org/10.1016/j.geomorph.2004.09.025.
Feizizadeh, B., Blaschke, T. (2013). GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran, Nat Hazards. 65, 2105–2128, https://doi.org/10.1007/s11069-012-0463-3.
Feizizadeh, B., Blaschke, T. (2013). Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS, Journal of Environmental Planning and Management, 56(1): 1-23. http://dx.doi.org/10.1080/09640568.2011.646964.
Feizizadeh, B., Blaschke, T., Nazmfar, H., Rezaei Moghaddam, M.H. (2013). Landslide Susceptibility Mapping for the Urmia Lake basin, Iran: A multiCriteria Evaluation Approach using GIS, Int. J. Environ. Res, 7(2): 319-336.
Ghorbanzadeh, O., Feizizadeh, B., Blaschke, T., Khosravi, R. (2018). Spatially Explicit Sensitivity and Uncertainty Analysis for the landslide risk assessment of the Gas Pipeline Networks; AGILE 2018 –Lund, June 12-15.
Gokceoglu, C., Aksoy, H. (1996). Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques, Engineering Geology, 44(1–4): 147–161, https://doi.org/10.1016/S0013-7952(97)81260-4.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31: 181–216, https://doi.org/10.1016/S0169-555X(99)00078-1.
Ildoromi, A., spehri, M. (2023). Accuracy of landslide potential hazard maps of Kurdistan dam watershed using Full ConsistencyMethod (FUCOM), BestWorst Method (BWM) and Analytic Hierarchy Process (AHP) methods. Journal of Hydrogeomorphology, 10(37), 80-63. doi: 10.22034/hyd.2023.55538.1682.
Intarawichian, N., Dasananda, S. (2010). Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chem watershed, Northern Thailand, Suranaree Journal of Science and Technology, 17(3): 277-292.
Keeney, R.L., Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs; New York: J. Wiley. https://doi.org/10.1017/CBO9781139174084.
Lajmorak, M., Piri, Z. (2023). Landslide Hazard Zoning Using Hierarchical Analysis Process (AHP) Model and GIS Technology (Case Study: Baghmalek County). Journal of Geography and Environmental Hazards, 12(3), 193-215. doi: 10.22067/geoeh.2022.77009.1239.
Lami, I.M., Abastante, F. (2014). Decision   making   for   urban   solid   waste   treatment   in   the   context   of territorial   conflict:   Can   the   Analytic   Network   Process   help?, Land Use Policy, 41: 11-20, https://doi.org/10.1016/j.landusepol.2014.04.010.
Magliulo, P., Di Lisio, A., Russo, F., Zelano, A. (2008). Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy, Nat Hazards, 47(3): 411–435, https://doi.org/10.1007/s11069-008-9230-x.
Malczewski, J. (1999). GIS and Multicriteria Decision Analysis; New York. J. Wiley & Sons, 408p.
Moazzez, S., Roostaei, S., Rahimpour, T. (2019). Landslide Hazard Zonation Using ANP model and GIS technique in the Nahand Chai Basin. Quantitative Geomorphological Research, 8(2), 23-37. https://www.geomorphologyjournal.ir/article_98645.html?lang=en.
Mokhtari, D., Rezaei Moghaddam, M.H., Rahimpour, T., Moazzez, S. (2020). Preparing the Risk Map of Flood Occurrence in the Ghomnab Chai Basin Using ANP Model and GIS Technique. Journal of Ecohydrology, 7(2), 497-509. https://doi.org/10.22059/ije.2020.298759.1298 (In Persian).
Nabavi, M.H. (1976). An introduction to geology of Iran; Geology organization of Iran, 109p. (In Persian)
Neaupane, K.M., Piantanakulchai, M. (2006). Analytic network process model for landslide hazard zonation, Engineering Geology, 85: 281–294, https://doi.org/10.1016/j.enggeo.2006.02.003.
Piacentini, D., Troiani, F., Soldati, M., Notarnicola, C., Savelli, D., Schneiderbauer, S., Strada, C. (2012). Statistical analysis for assessing shallow - landslide susceptibility in South Tyrol (south - eastern Alps, Italy), Geomorphology, 151-152: 196-206, https://doi.org/10.1016/j.geomorph.2012.02.003.
Rahimpour, T., Roostaei, S., Nakhostinrouhi, M. (2018). Landslide Hazard Zonation Using Analytical Hierarchy Process and GIS A Case Study of Sardool Chay Basin, Ardabil Province, Journal of Hydrogeomorphology, 4(13), 1-20. https://dor.isc.ac/dor/20.1001.1.23833254.1396.4.13.1.6 (In Persian).
Saaty, T.L. (1980). The Analytic Hierarchy Process; New York. McGraw Hill, 287p.
Saaty, T.L. (1999). Fundamentals of the analytic network process; Proceedings of International Symposium on Analytical Hierarchy Process. August 12-14, Kobe, Japan.
Saaty, T.L. Vargas, L.G. (2006). Decision Making with the Analytic Network Process; New York. Springer Science.
Shariat Jafari, M. (1996). Landslide (fundamentals and principles of Sustainability of natural slopes); Tehran. Sazeh. 218p. (In Persian).
Stoecklin, J. (1968). Geological map of Ajabshir plain, Geological survey and mineral exploration of Iran
Varnes, D.J. (1984). International association of engineering geology comm. on landslides and other mass movements on slopes: landslide hazard zonation: a review of principles and practice; UNESCO Band 63, Paris.
Wang, Y., Feng, L., Li, S., Ren, F., Du, Q. (2020). A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China, Catena, 188, https://doi.org/10.1016/j.catena.2019.104425.
Zebardast, E. (2010). Application of Analytic Network Process (ANP) in urban and regional planning, Beautiful arts- architecture and urbanism. 41: 79-90. (In Persian).
Zhou, Ch., Yin, K., Cao, Y., Ahmed, B., Li, Y., Catani, F., Pourghasemi, H.R. (2018). Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China, Computers and Geosciences, 112: 23-37, https://doi.org/10.1016/j.cageo.2017.11.019.