نوع مقاله : پژوهشی

نویسندگان

1 استاد گروه جغرافیای طبیعی، دانشکده‌ علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشجوی دکتری ژئومورفولوژی، دانشکده‌ علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشیار گروه منابع طبیعی و عضو پژوهشکده مدیریت آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

چکیده

در پژوهش حاضر خطر وقوع زمین‌لغزش در حوضه آبریز زمکان، واقع در استان کرمانشاه، ارزیابی شد. دو مدل ماشین‌بردار پشتیبان (SVM) و رگرسیون لجستیک برای تهیه نقشه حساسیت زمین‌لغزش استفاده شد. در راستای اهداف تحقیق، 13 لایه اطلاعاتی شامل ارتفاع، شیب، جهت شیب، عدد ناهمواری ملتون، تحدب سطح زمین، طول دامنه، عمق دره، رطوبت توپوگرافیک، بارش، سازندهای زمین‌شناسی، فاصله از آبراهه، فاصله از جاده و پوشش گیاهی به‌عنوان متغیرهای مستقل استفاده شد. حدود 70 درصد پیکسل‌های لغزشی حوضه به‌منظور آموزش و 30 درصد برای اعتبارسنجی مدل استفاده شدند. اعتبارسنجی مدل‌ها با کاربست منحنی ROC صورت گرفت. نتایج نشان‌دهنده کارایی و دقت بالاتر تابع پایه شعاعی (RBF) مدل SVM برای تهیه نقشه خطر زمین‌لغزش منطقه است. مساحت زیر منحنی (AUC) تابع پایه شعاعی حدود 951/0 برای آموزش مدل و 944/0 برای آزمون مدل به‌دست آمد. نتایج بیانگر این است که فاکتورهای شیب با ضریب 28/0، بارش با ضریب 27/0، لیتولوژی با ضریب 26/0 و ارتفاع با ضریب 22/0 کنترل‌کننده‌های اصلی وقوع زمین‌لغزش در سطح حوضه آبریز زمکان هستند. توابع مدل SVM و هم‌چنین رگرسیون لجستیک نیز اثرات قطعی فاکتورهای انتخابی بر وقوع زمین‌لغزش را تائید کردند. براساس نقشه پهنه‌بندی زمین‌لغزش حدود 35 درصد مساحت حوضه مطالعاتی در کلاس خطرپذیری زیاد و بسیار زیاد قرار گرفته است. پهنه‌های مذکور عمدتاً در نیمه شرقی حوضه توزیع شده‌اند. ارتفاع زیاد، غلبه شیب‌های تند، دریافت نزولات جوی قابل توجه و رخنمون وسیع سازند کژدمی با تناوبی از لایه‌های آهکی، رسی، مارنی و شیلی مهم‌ترین دلایل حساسیت بالای این پهنه‌ها نسبت به زمین‌لغزش هستند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Spatial assessment and zoning of landslide risk in Zamkan watershed using support vector machine and logistic regression

نویسندگان [English]

  • Fariba Esfandyari Darabad 1
  • Ghobad Rostami 2
  • Raoof Mostafazadeh 3
  • Mousa Abedini 1

1 Professor, Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

2 Ph.D student, Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

3 Associate Professor, Department of Natural Resources and member of Water Management Research Center, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili

چکیده [English]

In the current study, the risk of landslides in the Zamkan Watershed, located in Kermanshah Province, was evaluated. Two machine learning models, Support Vector Machine (SVM), and Logistic Regression, were used to prepare a landslide susceptibility map. Toward this, 13 informational layers including elevation, slope, aspect, Melton ruggedness number, terrain convexity, stream length, valley depth, topographic wetness index, precipitation, geological formations, distance from rivers, distance from roads, and vegetation cover were utilized as independent variables. Approximately 70% of the watershed's landslide pixels were used for model training, and 30% for model validation. Model validation was performed using ROC curves. The results indicated the higher performance and accuracy of the radial basis function (RBF) kernel of the SVM model for generating landslide hazard maps in the study area. The area under the curve (AUC) for the RBF kernel was approximately 0.951 for model training and 0.944 for model testing. The results suggest that slope with a coefficient of 0.28, precipitation with a coefficient of 0.27, lithology with a coefficient of 0.26, and elevation with a coefficient of 0.22 are the main controlling factors for landslides occurrence in the Zamkan Watershed. Both the SVM model and logistic regression confirmed the deterministic effects of selected factors on landslides. About 35% of the study area as classified as highly susceptible to landslides, primarily in the eastern half of the watershed. Factors such as high elevation, steep slopes, heavy precipitation, and the Kazhdomi Formation's composition were identified as key contributors to this susceptibility.

کلیدواژه‌ها [English]

  • Landslide
  • Logistic regression
  • Support Vector Machine (SVM)
  • Zamkan watershed
  • Kermanshah province
Abdollahzadeh, A., Ownegh, M., Sadoddin, A., & Mostafazadeh, R. (2016). Comparison of two landslide-prone area determination methods in Ziarat Watershed, Golestan Province. Emergency Management, 5(1), 5-13.
Abedini, M., Ghasemian, B., Shirzadi, A., Shahabi, H., Chapi, K., Pham, B. T., ... & Tien Bui, D. (2019). A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment. Geocarto International, 34(13), 1427-1457.
Aditian, A., Kubota, T., & Shinohara, Y. (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101-111.
Aghayary, L., Asghari Saraskanrood, S., & Zeynali, B. (2024). Identification and zoning of landslide prone areas in Germi city. Hydrogeomorphology, doi: 10.22034/hyd.2024.58703.1709
Alaei Taleghani, M. 2007. Geomorphology of Iran, Ghoomes publ. Tehran. 360p.
Asghari, S., Hasan Zadeh, R., & Raoofi, S. (2020). Investigation of factors Influencing rock fall and Its zoning with logistic regression in Ali Bayad basin of Horand, Hydrogeomorphology, 7(23), 38-21.
Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.
Bai, S., Wang, J., Zhang, Z., & Cheng, C. (2012). Combined landslide susceptibility mapping after Wenchuan earthquake at the Zhouqu segment in the Bailongjiang Basin, China. Catena, 99, 18-25.
Cao, J., Zhang, Z., Wang, C., Liu, J., & Zhang, L. (2019). Susceptibility assessment of landslides triggered by earthquakes in the Western Sichuan Plateau. Catena, 175, 63-76.
Chen, W., Zhang, S., Li, R., & Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of The Total Environment, 644, 1006-1018.
Chen, Z., Ye, F., Fu, W., Ke, Y., & Hong, H. (2020). The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China. Natural Hazards, 101, 853-877.
Colkesen, I., Sahin, E. K., & Kavzoglu, T. (2016). Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression. Journal of African Earth Sciences, 118, 53-64.
Dang, V. H., Hoang, N. D., Nguyen, L. M. D., Bui, D. T., & Samui, P. (2020). A novel GIS-based random forest machine algorithm for the spatial prediction of shallow landslide susceptibility. Forests, 11(1), 118.
Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z., ... & Pham, B. T. (2020). Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 17, 641-658.
Esfandiary Darabad, F., Rahimi, M., Navidfar, A., & Arsalan, M. (2020). Assessment of landslide sensitivity by neural network method and vector machine algorithm (Case study: Heyran Road-Ardebil province). Quantitative Geomorphological Research, 9(3), 18-33.
Ghorbani, A., Mostafazadeh, R., Zabihi, M., & Jafari Roodsari, M. (2023). GIS-based Determining the Landslide Hotspot Occurrence using Getis-Ord Index in Gharnaveh Watershed, Golestan Province. Hydrogeomorphology, 10(36), 18-1.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1-4), 272-299.
Karami, F., Bayati Khatibi, M., Kheirizadeh, M., & Mokhtari Asl, A. (2020). Evaluation of performance of support vector machine algorithm in landslide susceptibility zoning in Ahar-chai Basin. Journal of Geography and Environmental Hazards, 8(4), 1-17.
Lee, S., Won, J. S., Jeon, S. W., Park, I., & Lee, M. J. (2015). Spatial landslide hazard prediction using rainfall probability and a logistic regression model. Mathematical Geosciences, 47, 565-589.
Li, Y., Liu, X., Han, Z., & Dou, J. (2020). Spatial proximity-based geographically weighted regression model for landslide susceptibility assessment: a case study of Qingchuan area, China. Applied Sciences, 10(3), 1107.
Luo, X., Lin, F., Chen, Y., Zhu, S., Xu, Z., Huo, Z., ... & Peng, J. (2019). Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features. Scientific reports, 9(1), 15369.
Najafi Eigdir, A., & roostaei, S. (2020). Prioritization of affecting factors on the landslide occurrence using the logistic regression model (Case study: Nazlochai basin). Hydrogeomorphology, 7(23), 81-59. doi: 10.22034/hyd.2020.11161
Oh, H. J., & Pradhan, B. (2011). Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37(9), 1264-1276.
Panahi, M., Gayen, A., Pourghasemi, H. R., Rezaie, F., & Lee, S. (2020). Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Science of the Total Environment, 741, 139937.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth Science Reviews, 180, 60-91.
Saha, S., Roy, J., Hembram, T. K., Pradhan, B., Dikshit, A., Abdul Maulud, K. N., & Alamri, A. M. (2021). Comparison between deep learning and tree-based machine learning approaches for landslide susceptibility mapping. Water, 13(19), 2664.
Schicker, R., & Moon, V. (2012). Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology, 161, 40-57.
Sepahvand, A., & Beiranvand, N. (2023). Application of the various soft computing techniques for Landslide susceptibility mapping (Case study: A part of Haraz Watershed). Water and Soil Management and Modelling, In Press doi: 10.22098/mmws.2023.12678.1263
Talebi Khiavi, H., & Mostafazadeh, R. (2022). The spatiotemporal dependencies of terrain indices with soil characteristics in a steep hillslope mountainous area. Arabian Journal of Geosciences, 15(10), 937.
Tanyas, H., Rossi, M., Alvioli, M., van Westen, C. J., & Marchesini, I. (2019). A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology, 327, 126-146.
Tsangaratos, P., Ilia, I., Hong, H., Chen, W., & Xu, C. (2017). Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides, 14, 1091-1111.
Wang, Y., Fang, Z., & Hong, H. (2019). Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of the total environment, 666, 975-993.
Wang, Z., & Brenning, A. (2021). Active-learning approaches for landslide mapping using support vector machines. Remote Sensing, 13(13), 2588.
Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70-80.
Yang, Y., Yang, J., Xu, C., Xu, C., & Song, C. (2019). Local-scale landslide susceptibility mapping using the B-GeoSVC model. Landslides, 16, 1301-1312.
Zhao, S., & Zhao, Z. (2021). A Comparative Study of Landslide Susceptibility Mapping Using SVM and PSO‐SVM Models Based on Grid and Slope Units. Mathematical Problems in Engineering, 2021(1), 8854606.
Zhao, X., & Chen, W. (2020). Optimization of computational intelligence models for landslide susceptibility evaluation. Remote Sensing, 12(14), 2180.