نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری گروه سنجش از دور و سیستم اطلاعات جغرافیای دانشکده برنامه ریزی و علوم محیطی دانشگاه تبریز ،تبریز

2 استاد ژئومورفولوژی گروه سنجش از دور و سیستم اطلاعات جغرافیای دانشکده برنامه ریزی و علوم محیطی دانشگاه تبریز ،تبریز

3 استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیای دانشکده برنامه ریزی و علوم محیطی دانشگاه تبریز ،تبریز

چکیده

This study aimed to delineate groundwater recharge zones using a combination of analytical hierarchy process (AHP), fuzzy-AHP, and frequency ratio (FR) models. Additionally, it aimed to compare the effectiveness of these models in groundwater recharge potential zone mapping. To achieve these objectives, nine groundwater influencing factors were considered, including geology, soil types, lineament density, elevation, slope, topographic wetness index, drainage density, land use land cover, and rainfall. Thematic maps for all these factors were generated using satellite and conventional data in the ArcGIS environment. Weight was assigned to each thematic layer based on its significance to recharge. All thematic layers were combined using AHP model-l (WLC), AHP model-ll (Weighted sum), fuzzy-AHP overlay, and FR-based model using ArcGIS. The findings revealed that 15% and 39% of the study area have high recharge potentials according to AHP-based model-l and model-ll, respectively. The FAHP model demarcated 43% of the area as high recharge zones while the FR model demarcated 42% of the area as high recharge zones. The majority of high groundwater recharge areas were found in the central part of the study area, while the southern part was demarcated as a moderate recharge zone. The eastern and western parts were demarcated as low recharge potentials zones. To validate the accuracy of these models, the study used receiver operating characteristic (ROC) validation curves. The ROC curves revealed that AHP model-ll had the highest accuracy (AUC=89%) followed by the FAHP model (AUC=88%), AHP model-l (AUC=84%), and FR (AUC=81%)...

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Comparative Study of Groundwater Recharge Mapping Using Analytical Hierarchy Process, Fuzzy- Analytical Hierarchy Process, and Frequency Ratio Models: A Case Study from Quetta Region, Pakistan

نویسندگان [English]

  • imad ali 1
  • Maryam Bayati khatibi 2
  • Sadra karimzadeh 3

1 Phd Student, Department of Remote Sensing and GIS, University of Tabriz, Iran

2 . Professor, Department of Remote Sensing and GIS, University of Tabriz, Iran,m_bayati@tabrizu.ac.ir

3 Aَssistant professor,, Department of Remote Sensing and GIS, University of Tabriz, Iran,

چکیده [English]

This study aimed to delineate groundwater recharge zones using a combination of analytical hierarchy process (AHP), fuzzy-AHP, and frequency ratio (FR) models. Additionally, it aimed to compare the effectiveness of these models in groundwater recharge potential zone mapping. To achieve these objectives, nine groundwater influencing factors were considered, including geology, soil types, lineament density, elevation, slope, topographic wetness index, drainage density, land use land cover, and rainfall. Thematic maps for all these factors were generated using satellite and conventional data in the ArcGIS environment. Weight was assigned to each thematic layer based on its significance to recharge. All thematic layers were combined using AHP model-l (WLC), AHP model-ll (Weighted sum), fuzzy-AHP overlay, and FR-based model using ArcGIS. The findings revealed that 15% and 39% of the study area have high recharge potentials according to AHP-based model-l and model-ll, respectively. The FAHP model demarcated 43% of the area as high recharge zones while the FR model demarcated 42% of the area as high recharge zones. The majority of high groundwater recharge areas were found in the central part of the study area, while the southern part was demarcated as a moderate recharge zone. The eastern and western parts were demarcated as low recharge potentials zones. To validate the accuracy of these models, the study used receiver operating characteristic (ROC) validation curves. The ROC curves revealed that AHP model-ll had the highest accuracy (AUC=89%) followed by the FAHP model (AUC=88%), AHP model-l (AUC=84%), and FR (AUC=81%)

کلیدواژه‌ها [English]

  • Groundwater recharges zoning
  • Analytical hierarchy process
  • Integrated-Analytical hierarchy process
  • Frequency ratio
  • Quetta region
  • Pakistan
Adiat, K., Nawawi, M., & Abdullah, K. (2012). Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool–a case of predicting potential zones of sustainable groundwater resources. Journal of hydrology, 440, 89-95.
Aher, P. D., Adinarayana, J., Gorantiwar, S. D., & Sawant, S. A. (2014). Information System for Integrated Watershed Management Using Remote Sensing and GIS. 17-34. doi:10.1007/978-3-319-05906-8_2
Ahmed, A. A., & Shabana, A. R. (2020). Integrating of remote sensing, GIS and geophysical data for recharge potentiality evaluation in Wadi El Tarfa, eastern desert, Egypt. Journal of African Earth Sciences, 172, 103957.
Ahmed, R., & Sajjad, H. (2018). Analyzing factors of groundwater potential and its relation with population in the Lower Barpani Watershed, Assam, India. Natural Resources Research, 27(4), 503-515.
Alam, F., Azmat, M., Zarin, R., Ahmad, S., Raziq, A., Vincent Young, H.-W., . . . Liou, Y.-A. (2022). Identification of Potential Natural Aquifer Recharge Sites in Islamabad, Pakistan, by Integrating GIS and RS Techniques. Remote Sensing. doi:10.3390/rs14236051
Ali, I., & Aftab, S. M. (2022). Climate Change and Human-Induced Factor Impacts on Quetta Valley Aquifer, Baluchistan, Pakistan. Journal of Himalayan Earth Sciences, 55(2), 21-45.
Allafta, H., Opp, C., & Patra, S. (2021). Identification of Groundwater Potential Zones Using RemoteSensing and GIS Techniques: A Case Study of the Shatt Al-Arab Basin. Remote Sensing, 13, 112. doi:10.3390/rs13010112
Anbazhagan, S., Ramasamy, S., & Das Gupta, S. (2005). Remote sensing and GIS for artificial recharge study, runoff estimation and planning in Ayyar basin, Tamil Nadu, India. Environmental geology, 48, 158-170.
Aouragh, M. H., Essahlaoui, A., El Ouali, A., El Hmaidi, A., & Kamel, S. (2017). Groundwater potential of Middle Atlas plateaus, Morocco, using fuzzy logic approach, GIS and remote sensing. Geomatics, Natural Hazards and Risk, 8(2), 194-206.
Argaz, A., Ouahman, B., Darkaoui, A., Bikhtar, H., Yabsa, K., & Laghzal, A. (2019). Application of Remote Sensing Techniques and GIS-Multicriteria decision Analysis for Groundwater Potential Mapping in Souss Watershed, Morocco. Environmental Sciences, 10(5), 411-421.
Arshad, A., Zhang, Z., Zhang, W., & Dilawar, A. (2020a). Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: A case study from an agro-urban region of Pakistan. Geoscience Frontiers, 11(5), 1805-1819.
Arshad, A., Zhang, Z., Zhang, W., & Dilawar, A. (2020b). Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: A case study from an agro-urban region of Pakistan. Geoscience Frontiers. doi:10.1016/j.gsf.2019.12.013
Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Scientific reports, 9(1), 2082.
Ashraf, M., & Routray, J. K. (2015). Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan. Natural Hazards, 77, 229-254.
Ashraf, M., Routray, J. K., & Saeed, M. (2014). Determinants of farmers’ choice of coping and adaptation measures to the drought hazard in northwest Balochistan, Pakistan. Natural Hazards, 73, 1451-1473.
Bayati khatibi ,M.,Rostami,F.,Valizadeh Kamran,K.(2022).Investigation and Assessment of Groundwater Vulnerability to Pollution using DRASTIC Model and Fuzzy Logic,Hydrogeomorphology,8(29),81-108.
Boughariou, E., Allouche, N., Ben Brahim, F., Nasri, G., & Bouri, S. (2021). Delineation of groundwater potentials of Sfax region, Tunisia, using fuzzy analytical hierarchy process, frequency ratio, and weights of evidence models. Environment, Development and Sustainability, 23(10), 14749-14774.
Brady, N. C., Weil, R. R., & Weil, R. R. (2008). The nature and properties of soils (Vol. 13): Prentice Hall Upper Saddle River, NJ.
Brunelli, M. (2014). Introduction to the analytic hierarchy process: Springer.
Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy sets and systems, 17(3), 233-247.
Carlston, C. (2018). Drainage density and streamflow. Geological Survey Professional Paper 422-C.
Chandra, S. (2006). Contribution of geophysical properties in estimating hydrogeological parameters of an aquifer. Ph. D. Thesis. BHU, Varanasi, 176.
Chandramohan, R., Kanchanabhan, T. E., & Siva Vignesh, N. (2019). Identification of Artificial Recharges Structures Using Remote Sensing and GIS for Arid and Semi-arid Areas. Nature Environment and Pollution Technology, 183-189.
Chaplot, V., & Le Bissonnais, Y. (2000). Field measurements of interrill erosion under different slopes and plot sizes. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 25(2), 145-153.
Chen, W., Li, H., Hou, E., Wang, S., Wang, G., Panahi, M., . . . Niu, C. (2018). GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Science of The Total Environment, 634, 853-867.
Chowdhury, A., Jha, M. K., & Chowdary, V. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environmental Earth Sciences, 59, 1209-1222.
Dabral, S., Bhatt, B., Joshi, J. P., & Sharma, N. (2014). Groundwater suitability recharge zones modelling – A GIS application. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-8, 347-353. doi:10.5194/isprsarchives-XL-8-347-2014
Das, S. (2019). Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundwater for Sustainable Development, 8, 617-629.
De Wit, P., & Nachtergaele, F.( 1990). Explanatory note on the soil map of the Republic of Botswana. Annex 1: Typifying pedons and soil analytical data.
 Dini.M,Mohammadi,A.(2018).The Zoning of Groundwater Level in the Marand Plain Based on the Existing Potential. Hydrogeomorphology,5(15),17-35.
 
El-Sawy, K., Ibrahim, A. M., El-Bastawesy, M. A., & El-Saud, W. A. (2016). Automated, manual lineaments extraction and geospatial analysis for Cairo-Suez district (Northeastern Cairo-Egypt), using remote sensing and GIS. International Journal of Innovative Science, Engineering & Technology, 3(5), 491-500.
Elvis, B. W. W., Arsene, M., Theophile, N. M., Bruno, K. M. E., & Olivier, O. A. (2022). Integration of shannon entropy (SE), frequency ratio (FR) and analytical hierarchy process (AHP) in GIS for suitable groundwater potential zones targeting in the Yoyo river basin, Méiganga area, Adamawa Cameroon. Journal of Hydrology: Regional Studies, 39, 100997.
Essig, E. T., Corradini, C., Morbidelli, R., & Govindaraju, R. S. (2009). Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results. Journal of hydrology, 374(1-2), 30-42.
Faust, N., Anderson, W., & Star, J. (1991). Geographic information systems and remote sensing future computing environment. Photogrammetric Engineering and Remote Sensing, 57(6), 655-668.
Ffolliott, P. F., Baker, M. B., Edminster, C. B., Dillon, M. C., & Mora, K. L. (2012). Land stewardship through watershed management: perspectives for the 21st century: Springer Science & Business Media.
FitzPatrick, E. A. (1978). An introduction to soil science. Soil Science, 125(4), 271.
Freeze, R. A. (1984). Groundwater contamination: Wiley Online Library.
Gebreyohannes, T., De Smedt, F., Walraevens, K., Gebresilassie, S., Hussien, A., Hagos, M., . . . Gebrehiwot, K. (2017). Regional groundwater flow modeling of the Geba basin, northern Ethiopia. Hydrogeology Journal, 25(3), 639.
Gebrie, T., Gadissa, E., Ahmad, I., Dar, M. A., Teka, A. H., Tolosa, A. T., . . . Fenta, A. (2018). Groundwater resources evaluation using geospatial technology. Environmental Geosciences, 25(1), 25-35.
Githinji, T. W., Dindi, E. W., Kuria, Z. N., & Olago, D. O. (2022). Application of analytical hierarchy process and integrated fuzzy-analytical hierarchy process for mapping potential groundwater recharge zone using GIS in the arid areas of Ewaso Ng'iro–Lagh Dera Basin, Kenya. HydroResearch, 5, 22-34.
Harinarayana, P., Gopalakrishna, G., & Balasubramanian, A. (2000). Remote sensing data for groundwater development and management in Keralapura watersheds of Cauvery basin, Karnataka, India. Indian Mineral, 34(2), 11-17.
Hayat, S., Szabó, Z., Tótha, Á., & Szőnyia, J. M. (2021). MAR site suitability mapping for arid–semiarid regions by remote data and combined. Acque Sotterranee - Italian Journal of Groundwater,, 10(3), 17-28. doi:10.7343/as-2021-526as-2021-505
Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water (Vol. 2254): Department of the Interior, US Geological Survey.
Israil, M., Al-Hadithi, M., & Singhal, D. (2006). Application of a resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeology Journal, 14(5), 753-759.
Jerbi, H., Massuel, S., Leduc, C., & Tarhouni, J. (2018). Assessing groundwater storage in the Kairouan plain aquifer using a 3D lithology model (Central Tunisia). Arabian Journal of Geosciences, 11, 1-10.
Kabeto, J., Adeba, D., Regasa, M. S., & Leta, M. K. (2022). Groundwater Potential Assessment Using GIS and Remote Sensing Techniques: Case Study ofWest Arsi Zone, Ethiopia. Water, 14. doi:10.3390/w14121838
Khan, A., Govil, H., Taloor, A. K., & Kumar, G. (2020). Identification of artificial groundwater recharge sites in parts of Yamuna River basin India based on Remote Sensing and Geographical Information System. Groundwater for Sustainable Development, 11, 100415.
Khan, A. S., & Khan, S. D. (2013). Land subsidence and declining water resources in Quetta Valley, Pakistan. Environmental Earth Sciences, 70(6), 2719-2727. doi:10.1007/s12665-013-2328-9
Khan, A. S., Khan, S. D., & Kakar, D. M. (2013). Land subsidence and declining water resources in Quetta Valley, Pakistan. Environmental Earth Sciences, 70(6), 2719-2727.
Kotchoni, D. V., Vouillamoz, J.-M., Lawson, F. M., Adjomayi, P., Boukari, M., & Taylor, R. G. (2018). Relationships between rainfall and groundwater recharge in seasonally humid Benin: a comparative analysis of long-term hydrographs in sedimentary and crystalline aquifers. Hydrogeology Journal.
Liu, J., Gao, G., Wang, S., Jiao, L., Wu, X., & Fu, B. (2018). The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. Journal of Geographical Sciences, 28, 59-78.
Ma, Y. (2004). GIS Application In Watershed Management. Nature and Science, 2(2).
Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189-196.
Mahalingam, B., & Vinay, M. (2015). Identification of ground water potential zones using GIS and Remote Sensing Techniques: A case study of Mysore taluk-Karnataka. International journal of Geomatics and Geosciences, 5(3), 393-403.
Maidment, D. R. (1993). Handbook of hydrology: McGraw-Hill.
Malczewski, J. (1999). GIS and multicriteria decision analysis: John Wiley & Sons.
Mallick, J., Khan, R. A., Ahmed, M., Alqadhi, S. D., Alsubih, M., Falqi, I., & Hasan, M. A. (2019). Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation techniques. Water, 11(12), 2656.
Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences, 7, 711-724.
Maqsoom, A., Aslam, B., Khalid, N., Ullah, F., Anysz, H., Almaliki, A. H., . . . Hussein, E. E. (2022). Delineating Groundwater Recharge Potential through Remote Sensing and Geographical Information Systems. Water, 14(11), 1824. doi:10.3390/w14111824
Miller, G. T., & Spoolman, S. E. (2007). Living in the environment: principles, connections, and solutions. (16 ed.): Thomson Brooks/Cole.
Moghaddam, D. D., Rezaei, M., Pourghasemi, H., Pourtaghie, Z., & Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8, 913-929.
Mondal, P., & Dalai, A. K. (2017). Sustainable utilization of natural resources: CRC Press.
Nampak, H., Pradhan, B., & Abd Manap, M. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of hydrology, 513, 283-300.
Njumbe, L. J. N., Lordon, A. E. D., & Agyingi, C. M. (2023). Determination of Groundwater Potential Zones on the Eastern Slope of Mount Cameroon using Geospatial Techniques and Seismoelectric Method.
Oh, H.-J., Kim, Y.-S., Choi, J.-K., Park, E., & Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of hydrology, 399(3-4), 158-172.
Ozdemir, A. (2011). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of hydrology, 411(3-4), 290-308.
P.M., D., & R. Dudal. (1989). Lecture notes on the geography, formation, properties and use of major soils of the world
Pourtaghi, Z. S., & Pourghasemi, H. R. (2014a). Avaliação e mapeamento do potencial em nascentes de água subterrânea com base em SIG no município de Birjand, sul da Província de Khorasan, Irão. Hydrogeology Journal, 22, 643-662.
Pourtaghi, Z. S., & Pourghasemi, H. R. (2014b). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol J, 22(3), 643-662.
Qureshi, A. S. (2020). Groundwater Governance in Pakistan: From Colossal Development to Neglected Management. Water, 12(11), 3017. doi:10.3390/w12113017
Raduła, M. W., Szymura, T. H., & Szymura, M. (2018). Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values. Ecological indicators, 85, 172-179.
Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867-883.
Saaty, T. L. (1980). The analytical hierarchy process, planning, priority. Resource allocation. RWS publications, USA.
Saranya, T., & Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2), 1105-1122.
Sarath Prasanth, S., Magesh, N., Jitheshlal, K., Chandrasekar, N., & Gangadhar, K. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science, 2, 165-175.
Sardar, H., Akhter, G., Ge, Y., & Ammar Haider, S. (2022). Delineation of potential managed aquifer recharge sites of Kuchlak sub-basin, Balochistan, using remote sensing and GIS. doi:10.3389/fenvs.2022.916504
Selvam, S., Dar, F. A., Magesh, N., Singaraja, C., Venkatramanan, S., & Chung, S. (2016). Application of remote sensing and GIS for delineating groundwater recharge potential zones of Kovilpatti Municipality, Tamil Nadu using IF technique. Earth Science Informatics, 9, 137-150.
Selvam, S., Manimaran, G., Sivasubramanian, P., & Seshunarayana, T. (2014). Geoenvironmental Resource Assessment Using Remote Sensing and GIS: A case study from southern coastal region. Research Journal of Recent Sciences, 2277, 2502.
Senthilkumar, M., Gnanasundar, D., & Arumugam, R. (2019). Identifying groundwater recharge zones using remote sensing & GIS techniques in Amaravathi aquifer system, Tamil Nadu, South India. Sustainable Environment Research, 29(1), 1-9.
Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon. Hydrogeology Journal, 14, 433-443.
Simmers, I. (1990). Aridity, groundwater recharge and water resources management. Groundwater recharge. A guide to understanding the natural recharge. Hannover: Ed. R. van Acken GmbH, 1-20.
Singh, A., Panda, S., Kumar, K., & Sharma, C. S. (2013). Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab. Environmental management, 52, 61-71.
Srivastava, P. K., & Bhattacharya, A. K. (2006). Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. International Journal of Remote Sensing, 27(20), 4599-4620.
Thakur, D., Bartarya, S. K., & Nainwal, H. C. (2018). Mapping groundwater prospect zones in an intermontane basin of the Outer Himalaya in India using GIS and remote sensing techniques. Environmental Earth Sciences, 77.
Tiwari, A. K., Lavy, M., Amanzio, G., De Maio, M., Singh, P. K., & Mahato, M. K. (2017). Identification of artificial groundwater recharging zone using a GIS-based fuzzy logic approach: a case study in a coal mine area of the Damodar Valley, India. Applied Water Science, 7, 4513-4524.
Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology: John Wiley & Sons.
Tolche, A. D. (2021). Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geology, Ecology, and Landscapes, 5(1), 65-80.
Uc Castillo, J. L., Martínez Cruz, D. A., Ramos Leal , J. A., Tuxpan Vargas, J., Rodríguez Tapia, S. A., & Marín Celestino, A. E. (2022). Delineation of Groundwater Potential Zones (GWPZs) in a Semi-Arid Basin through Remote Sensing, GIS, and AHP Approaches. Water, 14. doi:10.3390/w14132138
V.Keshavan, S.Ranjith, J.Sabarish, J.Srinivasan, & D.Sivasankar. (2017). Identification of Groundwater Recharge Potential Zones for a Watershed Using Remote Sensing and GIS. International Journal of Innovative Research in Science, Engineering and Technology, 16(4). doi:10.15680/IJIRSET.2017.0604048
Watto, M. A. (2015). The economics of groundwater irrigation in the Indus Basin, Pakistan: Tube-well adoption, technical and irrigation water efficiency and optimal allocation. University of Western Australia.  
Xu, G., Su, X., Zhang, Y., & You, B. (2021). Identifying Potential Sites for Artificial Recharge in the Plain Area of the Daqing River Catchment Using GIS-Based Multi-Criteria Analysis. Sustainabilty, 13. doi:10.3390/su13073978
Yeh, H.-F., Lee, C.-H., Hsu, K.-C., & Chang, P.-H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental geology, 58, 185-195.
Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3-4), 251-266.
Yıldırım, Ü. (2021). Identification of groundwater potential zones using GIS and multi-criteria decision-making techniques: a case study upper Coruh River basin (NE Turkey). ISPRS International Journal of Geo-Information, 10(6), 396.
Yuan, J., Lei, T., Guo, S., & Jiang, D. (2001). Study on spatial variation of infiltration rates for small watershed in loess plateau. J. Hydraul. Eng, 10, 88-92.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.