نوع مقاله : پژوهشی

نویسندگان

1 دانشیار دانشگاه محقق اردبیلی

2 دانشجوی کارشناسی ارشد، رشته سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی

3 دانشجوی دکتری رشته ژئومورفولوژی، گروه جغرافیای طبیعی دانشگاه محقق اردبیلی

چکیده

شناخت لندفرم‌ها و نحوه پراکنش آنها از نیازهای اساسی در علم ژئومورفولوژی کاربردی و سایر علوم محیطی است و نقشه لندفرم‌ها نمایانگر اشکال سطح زمین و نیز ماهیت فرآیندهایی است که در زمان حاضر رخ می‌دهند. هدف از این تحقیق، شناسایی لندفرم‌ها و کاربری‌های اراضی حوضه آبریز قرنقو با استفاده از روش‌های طبقه‌بندی شی‌گرا شامل الگوریتم نزدیکترین همسایه و آستانه‌گذاری می‌باشد. بدین منظور از تصاویر ماهواره لندست برای بازه زمانی 1990 (TM) و 2020 (OLI) استفاده شد. برای اعمال طبقه‌بندی در گام نخست تصحیحات اتمسفری و رادیومتریکی بر روی تصاویر اعمال شد و سپس به منظور شناسایی و استخراج بهتر پدیده‌ها از الگوریتم‌های PCA و MNF استفاده شد. برای انجام طبقه‌بندی تصاویر ماهواره‌ای نیز از روش‌های طبقه‌بندی شی‌گرا شامل روش نزدیکترین همسایه و آستانه‌گذاری بهره گرفته شد. برای صحت نقشه‌های تولید شده با استفاده از ضریب کاپا و صحت کلی استفاده گردید. نتایج ارزیابی روش‌های مورد استفاده نشان داد که روش نزدیکترین همسایه دارای دقت بیشتری نسبت به روش آستانه‌گذاری می‌باشد. همچنین نتایج حاصل از طبقه‌بندی نشان داد که بیشترین میزان تغییرات کاهشی در خلال سال‌های 1990-2020 مربوط به کاربری مرتع متراکم می‌باشد، چرا که 49/12 درصد کاهش داشته است و بیشترین میزان تغییرات افزایشی مربوط به کاربری زراعت آبی می‌باشد که 83/10 درصد افزایش داشته است که مهمترین علت این افزایش مساحت را می‌توان به احداث سد سهند در طول زمان ارتباط داد.

کلیدواژه‌ها

عنوان مقاله [English]

Identification and extraction of landforms and land uses of Qarnaqo watershed using object-oriented techniques

نویسندگان [English]

  • Sayyad Asghari Saraskanrood 1
  • Mostafa Omidifar 2
  • Ehsan Ghale 3

1 -Associate Professor, Department of Physical Geography, Mohaghegh Ardabili University

2 MSc. Student of Remote Sensing and GIS, University of Mohaghegh Ardabili

3 Department of physical geography, University of Mohaghegh Ardabili

چکیده [English]

Identification of landforms and the way of their distribution is one of the basic needs in applied geomorphology and other environmental sciences and landform maps show the shapes of the earth's surface. This project aims to identify the landforms of the Qaranqu catchment area using object-oriented classification methods including nearest neighbor algorithm and thresholding. Landsat satellite imagery for 1990 (TM) and 2020 (OLI) was used for this purpose. First, to apply the classification, atmospheric and radiometric corrections were applied to the images, then to better identify and extract the phenomena, principal component analysis (PCA), and MNF algorithms were used to classify satellite images using classification methods. Object-oriented, which included the nearest neighbor method and thresholding was used. For the accuracy of the maps produced using the two methods of Kappa index and the overall accuracy of the use, the results revealed that the nearest neighbor method is more accurate than the thresholding method. The classification results showed that the highest rate of decreasing changes during 1990-2020 is related to dense rangeland because it has decreased by 12.49 percent and the highest rate of incremental changes is related to irrigate agriculture which is 10.83 percent. The most important reason for this increase is the construction of Sahand Dam over time. In the absence of well-organized planning and the adoption of appropriate policies, the destruction of rangeland will continue and turning it into arable land, which leads to irreparable environmental and economic losses in the region.

کلیدواژه‌ها [English]

  • Geomorphology
  • Object Classification
  • Landform
  • Qaranqu Watershed
  • Northwest of Iran
Alavi Panah, S.K., Ehsani, A., & Omidi, P. (2004). Investigation of desertification and changes in Damghan playa lands using multi-time and multi-spectral satellite data. Desert Quarterly, 9(1), 143-150.
Ara, H. (2013). Landforms and their classification in geomorphology science (Case study: Jajroud catchment northeast of Tehran). Geographical Information "Sepehr", 22, 17-22.
Avarideh, H.R., Safari, A.R., Homayouni, S., & Khazaei, S. (2015). Nearshore bathymetry using hyperspectral remote sensing. Geospatial Engineering Journal, 6(1), 1-10.
Bahrami, H., Nohegar, A., & Mahmoudi, V. (1397). Automatic classification of watershed landforms using GIS (Case study: Borujen watershed in Chaharmahal and Bakhtiari province). Quantitative Geomorphological Research, 2(3), 17-30.
Chen, M., Su, W., Li, L., Chao, Z., Yue, A., & Li, H. (2009). Compare of Pixel-based and Object-oriented Knowledge–based Classification Methods Using Spot5 Imagery. Wseas Transction on Information Science and Applications, 477-489.
Dehn, M., Gartner, H., & Dikau, R. (2001). Principles of Modeling of Landform Structure. Computers and Geosciences, 27, 1005-1010.
Faizizadeh, B., AbdullahAbadi, S., & Valizadeh, Kh. (2017). Modeling Uncertainty from SRTM and ASTER elevation data and its effect on landform classification in Garmachay catchment. Journal of Geographical Information "Sepehr", 26(103), 29-41.
Faizizadeh, B., Azizi, H., & Valizadeh, Kh. (2007). Land use Mining of Malekan City using Landsat 7 ETM+ Satellite Imagery. Spatial Puissant, 26, 235–245.
Gercked, D. (2010). Object-based Classification of Landforms Based on Context their Local Geometry and Geomorphometric, Thesis (Ph.D.), Middle East Technical University, Ankara, Turkey.
Hojjati, M., & Mokarram, M. (2018). Using the sub-pixel model of attraction to classify landforms. Quantitative Geomorphology Research, 4(4), 40-55.
Huan, Y., Zhengwei, H., & Xin, P. (2010). Wetlands shrink simulation using Cellular Automata: a case study in Sanijiang Plains, China. Procedia Environmental Sciences, 2, 225-233.
Huang, L., & Ni, L. (2008). Object-Oriented Classification of High Resolution Satellite Image for Better Accuracy, Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, P. R. China, 25-27.
Jensen, J.R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd Edition, Upper Saddle River: Prentice-Hall, 526.
Karimi, K., Zehtabian, Gh., Faramarzi, M., & Khosravi, H. (2018). Investigating the effect of Karkheh dam irrigation networks on land use changes using satellite images (Case study: Dasht-e Abbas semi-arid region). Journal of Geographical Information "Sepehr", 27(106), 129-140.
Madadi, A., & Mozaffari, H. (2018). Comparison and evaluation of supervised classification methods in extracting and detecting changes in landforms geomorphology of Sajasrood catchment. Quantitative Geomorphological Research, 7(3), 71-90.
Mehrabi Nejad, A. (2019). Geomorphologic Landform-Stratigraphy recognition of Hormoz Salt Domes Based on Interpretation of Satellite Images ETM+.
Mokarram, M., & Negahban, S. (2014). Classification of landforms using topographic position index (TPI) (Case study: southern region of Darab city). Journal of Geographical Information "Sepehr", 23(92), 57-65.
Mokarram, M., & Negahban, S. (2015). Landform classification using self-organizing neural networks (Self-organization map)(Case Study: Basin Gavkhuni). Quaternary Journal of Iran, 1(3), 225-238.
Myint, S.W., Gober, P., Brazel, A., GrossmanClarke, S., & Weng, Q. (2011). Per-pixel vs. object based classification of urban land cover extraction using high spatial resolution imagery. Remote sensing of environment, 115(5), 1145-1161.
Nair, C., Ammini, J., & Padmakumari Gopinathan, V. (2018). GIS Based landform classification using digital elevation model (case study from two river basins of Southern Western Ghats, Kerala, India). Modeling Earth System and Environment, 304-313.
Peterson, L.k., Bergen, K.M., Brown, D.G., Vashcchuk, L., & Blam, Y. (2009). Forested land cover patterns and trends over changing forest management eras in the Siberian Baikal region. Forest Ecology and Management, 257, 911-922.
Qi, W., Yang, X., Wang, Z., Li, Z., Yang, F., & Zheng, Z. (2018). Fast Landform Position Classification to Improve the Accuracy of Remote Sensing Land Cover Mapping. Earth Sciences, 7(1), 23-39.
Rajabi, M. (2008). Analysis of landforms based on aerial photographs and topographic maps (case study: Azerbaijan). Geographical Information "Sepehr", 17(67), 62-68.
Rayati Shavazi, M., Karam, A., Ghaffarian Malmiri, H.R., & Adel, S. (2018). Comparison of the efficiency of some classification algorithms in studying the changes of desert landforms in Yazd-Ardekan plain. Quantitative Geomorphological Research, 6(1), 57-73.
Saeedzadeh, F., Sahebi, M.R., Ebadi, H., & Sadeghi, V. (2016). Change Detection of Multi temporal Satellite Images by Comparison of Binary Mask and Most Classification Comparison Methods. Journal of Geomatics Science and Technology, 5(3), 111-128.
Shayan, S., Mullah Mehr Alizadeh, F., & Jannati, M. (2006). Performance data of remote sensing (RS) in mapping landforms and its role in environmental planning. Journal of Spatial Planning, 9(4), 111-148.
Vesanto, J., & Alhoniemi, E. (2000). Clustering of the Self-Organizing Map. IEEE Transactions on Neural Networks, 11(3), 586-600.