نوع مقاله : پژوهشی

نویسندگان

1 آموزش و پرورش ناحیه5 تبریز

2 هیت علمی دانشگاه محقق اردبیلی

3 دبیر آموزش و پرورش ناحیه 5 تبریز

چکیده

در این پژوهش نقشه کاربری اراضی حوضه آبریز دره‌رود با روش شیء‌گرا و با استفاده از تصاویر ماهواره‌ای لندست 5 و 8 در بازه زمانی 30 ساله، سال‌های 1990 و 2019 بهره گرفته شده است تا تاثیرات آن بر تغییرات دبی رودخانه دره‌رود مورد بررسی قرار بگیرد. تصاویر در چهارده کلاس طبقه بندی شد و تغییرات مساحتی کلاس ها مشخص شد که کلاس های کشت آبی، زراعت دیم، مناطق سنگی، مناطق مسکونی، باغات و دریاچه دارای افزایش مساحت و زمین های بایر، مراتع، اراضی جنگلی و بستر رودخانه دارای کاهش مساحت بودند. جهت مشاهده در تغییرات روند جریانی رودخانه، از روش SCS استفاده شد. این روش در مدل SWAT اجرا گردید. 2019 در مدل SWAT بر اساس لایه رقومی ارتفاع مرزبندی حوضه تعیین شد. پارامترهای لازم به مدل مذکور، شامل لایه‌های خاک و تغییرات کاربری اراضی و داده‌های اقلیمی به مدل فراخوانی شد. جهت نیل به نتیجه صحیح و قابل قبول، دو سناریوی مجزا برای سال 1990 و 2019 اجرا و استخراج شد. نتایج نشان داد که با تغییر کاربری اراضی مقدار CN در سناریو دوم نسبت به سناریوی اول، 5 درصد افزایش داشته و از70/02 به 73/5 افزایش یافته که به دلیل تغییر در روند کاربری اراضی به نفع غیر قابل نفوذتر شدن حوضه در برابر بارش نسبت به سال 1990 می باشد. همچنین بدلیل افزایش تغییر در نوع پوشش گیاهی میزان نفوذ عمقی نیز از سناریو اول به سناریو دوم از 09/257 به 9/97 کاهش داشته است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of the results of land use changes on the discharge of Darre Rood river in a period of 30 years using the SWAT model

نویسندگان [English]

  • Rasool Hasan zadeh 1
  • Friba Esfandyari 2
  • sayyad Asghari saraskanrood 2
  • Zahra Miri 3

1 Education District 5 Tabriz

2 Faculty of Mohaghegh Ardabili University

3 Secretary of Education, District 5, Tabriz

چکیده [English]

the object-oriented method in preparing the land use map of Darre Rood catchment area using Landsat 5 and Landsat 8 images in a period of 30 years, from 1990 to 2019 and its effects on changes in Darre rood river discharge it placed. The images were classified into fourteen classes and the changes in the area of ​​the classes revealed that the classes of irrigated agriculture, rainfed agriculture, rocky areas, residential areas, gardens and lakes with increased area and barren lands, pastures, forest lands and riverbeds decreased They were. To find out the changes in the river flow trend, SCS method was used which was implemented in SWAT model and according to land use in 1990 and 2019 in SWAT model was determined according to the digital elevation layer of the basin and all the necessary parameters to the model. Which included soil layers and land use changes and climate data were called into the model and two separate scenarios for 1990 and 2019 were used. The results showed that with the change of land use, the amount of CN in the second scenario compared to the first scenario increased by 5% and increased from 02.70 to 5.73, which due to the change in land use in favor of the basin becomes more impermeable to rain. Compared to 1990. Also, due to the increase in the type of vegetation, the amount of deep penetration has decreased from the first scenario to the second scenario from 257.09 to 97.9.

کلیدواژه‌ها [English]

  • Land use change
  • object-oriented classification
  • SWAT model
  • SCS method
Khavarian, H., Aghaie, M., & Mostafazadeh, R. (2020). Predicting the effects of land use changes on the monthly flow using hydrological model and Remote Sensing in the Kouzetopraghi watershed, Ardabil. Hydrogeomorphology, 6(24):19-39. (In Persian).
Abbaspour, K.C., Johnson C.A., & Van Genuchten M.T. (2004), Estimating uncertain flow and   transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal. 3(4): 1340-1352.
Asghari Saraskenrood, S., Mohammadnejad, V., & Emami, H. (2019). Investigation of land use change using basic and object-oriented pixel methods and analysis of the effects of land use change in soil erosion Case study: Maragheh city, Quantitative Research in Geomorphology, 8(1): 160-178. (In Persian)
Blavasi, A., Asghari Saraskanrood, P., Esfandiari, F., & Zeinali, B. (2020). The role of land use change on runoff characteristics and flood flow in the Doab catchment. Echo Hydrology, 7(2): 331-344. (In Persian)
Pourreza Belondi, M., Basaltpour, A.A, & Zaraatkar, Z. (2017). Theory and step-by-step training for calibration and analysis of SWAT model uncertainty, Naqous Publications, pp. 182p. (In Persian)
Feizizadeh, B., Pirnazar, M., Zand Karimi, A., & Abedi Gheshlaghi, H. (2014). Evaluation of the application of fuzzy algorithms in increasing the accuracy of land use maps extracted by object-oriented processing methods, Geographical Information, 24(94): 107-117. (In Persian)
Fatehi, Z., & Shahoui, V. (2020). Application of SWAT model in simulation of monthly runoff of Urmia Lake watershed in Kurdistan province, Environment and Water Engineering, 6(3): 293-303. (In Persian)
Feizizadeh, B., & Helali, H. (2010). Comparison of basic and object-oriented pixel methods and effective parameters in land use classification of West Azerbaijan province, Natural Geography Research, 42(71): 74-83. (In Persian)
Hamedi, N., Ismaili, A., Faramarzi, H., (2019). Analysis of potential fire risk scenarios in Lordegan using GIS and RS, Journal of Crisis Management, 99(17): 17-27. (In Persian)
Hassanzadeh, R., Asghari, P., & Esfandiari, F. (2021). Evaluation of the results of land use changes on the discharge of Darrehrood River in a three-year period using HEC-HMS model, Quantitative Geomorphological Researches, 10(3): 157-174. (In Persian)
Moradi, A., Najafinejad, A., & Ownegh, M. (2018). Detection of land use change trends and its effect on discharge and suspended load simulated with SWAT model Case study of Galikesh watershed in Golestan province, Rangeland and Watershed Management Journal, 71(2): 489-504. (In Persian)
Rezaei Moghadam, M. H., Rezaei Banafsheh, M., Feizizadeh, B., & Nazmfar, H. (2008). Classification of land cover based on object-oriented method and satellite imagery, Case study: West Azerbaijan Province, Journal Watershed Management, 89(87): 21-35. (In Persian)
Salmani, S., Ebrahimi, H., Mohammadzadeh, K., & Valizadeh, Kh. (2017). Evaluation of different object-oriented classification methods in extracting land use from Iconus satellite images, Geographical Information, 28(111): 2015-215. (In Persian)
Samadzadeh, R., Khayyam, M., & Fazeli, A. (2013) Modeling the regional estimation of suspended sediment in the catchment area of Ardabil River Valley, Geography and Environmental Planning, 24(51): 153-178. (In Persian)
Alshari, E.A. & Gawali, B.W. (2021) Development of classification system for LULC using remote sensing and GIS, Global Transitions Proceedings, N2, PP8-17.
Aman, A., & Randriamanantena, H.P., Podaire, A., & Froutin, R. (1992). Upscale integration of normalized difference vegetation index: The problem of spatial heterogeneity. IEEE Transactions on Geoscience and Remote Sensing, 30, 326−338.
Aragaw. H.M., Mishra. S.K., (2021). Runoff curve number-potential evapotranspiration-duration relationship for selected watersheds in Ethiopia. Model. Earth Systems and Environment. https://doi.org/10.1007/s40808-021-01193-6, pp 640-655.
Beven. K.J. (2011). Rainfall-runoff modelling: the primer, 2th, John Wiley & Sons, Ltd., Chichester, 1-449.
Chen. Y., Niu. J., & Sun. Y., (2020). Study on streamflow response to land use change over the upper reaches of Zhanghe Reservoir in the Yangtze River basin, Geoscience Letters, V7, pp2-12.
Getachew. B., Manjunatha, B.R., & Gangadhara Bhat. H. (2021). Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia, Jurnal of Hydrology, V595, https://doi.org/10.1016/j.jhydrol.2021.125974.
L.Beharry. S., Gabriels. D., & Lobo. D. (2020). Use of the SWAT model for estimating reservoir volume in the Upper Navet watershed in Trinidad, SN Applied Sciences (2021) 3:163 | https://doi.org/10.1007/s42452-021-04201-7.
LeongTan. M., LinTew. Y., PanChun. K., (2021). Improvement of the ESA CCI Land cover maps for water balance analysis in tropical regions: A case study in the Muda River Basin, Malaysia, Journal of Hydrology: Regional Studies, 36: 2-14.
Pertiwi, P.C., & Hisyam, E.S., & Yofianti, D. (2020). The effect of land use change to surface runoff discharge in the POMPONG watershed at Bangka regency, IOP Conference Series: Earth and Environmental Science, 599, 1-7.
Ronald. E.P, Saskia. D.K, Margres. K., Tom. C., & Tomas. G., (2013). Impact of dams, dam removal and dam-related river engineering structures on sediment connectivity and channel morphology of the Fugnitz and the Kaja Rivers, 5th Symposium for Research in Protected Areas, 607-613pp.
Spruce, J., Bolten, J., Mohammad, I., Srinivasan, R., & Lakshmi, V. (2020). Mapping land use- land cover change in the Lower Mekong basin from 1997-2010, Frontiers in Environmental Science, 8, 1-13.
Karkauskaite, P., Tagesson, T., & Fensholt, R. (2017). Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for Start-of-Season Trend Analysis, of the Northern Hemisphere Boreal Zone, Remote Sensing, 9, 2-21.
Khalid, H., Alkaabi, K. Ghebreyesus, D. Liaqat, M.U. & Sharif, H. (2020). Land use / land cover change along the Eastern Coast of the UAE and its impact on flooding risk, Geomatics, Natural Hazards and Risk, 11, 112-130.
Kibii, J.K., & Kipkorir, E.C. (2021). Application of Soil andWater Assessment Tool (SWAT) to Evaluate the Impact of Land Use and Climate Variability on the Kaptagat Catchment River Discharge. Sustainability, 13, 2-19.
Min, L., Fang, H., Hannv, Z., & Ping, W. (2009). Vegetation Canopy Water Content Estimation Using GVMI and EWT Model from MODIS Data, 2009 2nd International Congress on Image and Signal Processing, 10, 1-5.
Pietro, C., Stéphane, F., & Jean, M.G. (2002). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications, Remote Sensing of Environment, 82:198-207.
Punitha, P.A., & Sutha, J. (2021). Object based classification of high resolutionremote sensing image using HRSVM-CNN classifier, European Journal of Remote Sensing, V53, N51, pp 16-30.
Qiaoyun, X., Wenjiang, H., Jyoti, R.D., & Dailiang, R. (2018). Vegetation Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval, IEEE Journal, 44, 1-12.
Taia.S., Erraioui. L., & Mbrenga. N.C., (2021).  Assessment of soil erosion using two spatial approaches: RUSLE and SWAT Model, E3S Web of Conferences 234, N82, pp1-7.
Wen Z., Dongping M., Lu Xu, H.B., & Min, W. (2018), Stratified Object-Oriented Image Classification Based on Remote Sensing Image Scene Division, Journal of Spectroscopy, 2018, 1-11.
Wanessa.C., Maria. S., Antonio. A., (2020). Modeling runoff response to land-use changes using the SWAT model in the Mundaú watershed, Brazil, Journal of Environmental Analysis and Progress, 5: 194-206.
 Warit. C., Matharit. N., Komkrit. B., Chaipant. R., Balamurugan. P., & Butsawan. B., (2021). Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin, Water, 13, 2146, pp1-20.   
Zangyan, J., Alfredo, R.H. Jin, C., Yunhao, C., Jing, L., Guangjian, Y., & Xiaoyu, Z. (2006). Analysis of NDVI and scaled difference vegetation index retrievals ofvegetation fraction, Remote Sensing of Environment, 101, 366-378.
Zeiaei, Kh., EsmaliOuri, A., Mostafazadeh, R., & Golshan, M. (2021). Assessing the effects of various land use change scenarios on runoff using SWAT model in the Ahl Iman watershed, Hydrogeomorphology, 8(27): 123-138. (In Persian)
AhmadiSani, N., Solaimani, K., Razaghnia, L., Mostafazadeh, R. & Zandi, J. (2018). Assessing the efficiency of Arc-CN Runoff tool in runoff estimation and its comparison in 1996 and 2011 years in Haraz Watershed, Mazandaran Province. Hydrogeomorphology. 16: 139-158. (In Persian).