نوع مقاله : پژوهشی

نویسندگان

1 گروه سنجش از دور و ‌GIS، دانشکده جغرافیا، دانشگاه تهران

2 گروه سنجش از دور و GIS - دانشکده جغرافیا - دانشگاه تهران

چکیده

آب‌های زیرزمینی از مهم‌ترین منابع طبیعی در مناطق خشک و نیمه خشک محسوب می‌شوند. هدف از این پژوهش شناسایی مناطقی است که توان آب زیرزمینی دارند و اولویت بندی عوامل موثر بر آن هست. در این پژوهش 11 شاخص تأثیرگزار بر توان آب زیرزمینی شامل شیب، ارتفاع، جهت شیب، فاصله از آب‌راه، تراکم زه‌کشی، فاصله از گسل، شاخص رطوبت پستی و بلندی، موقعیت پستی و بلندی، سنگ شناسی، کاربری زمین و موقعیت شیب نسبی به کاربرده شد. به روش تصادفی30 درصد از مجموع 58 چشمه در گروه داده‌های اعتبارسنجی و 70 درصد آن در گروه داده‌های آموزش گذاشته شد. برای اولویت‌بندی عامل‌های مؤثر و پهنه‌بندی توان آب زیرزمینی در آبخیز قوریچای، روش جنگل تصادفی ارتقاء یافته با بیشینه آنتروپی با بهره‌گیری از سامانه اطلاعات جغرافیایی به کار برده شد و برای ارزیابی‌ مدل منحنی تشخیص عمل کرد نسبی (ROC) و سطح زیر منحنی (AUC )به کاربرده شد. نتیجه‌ نشان داد که توان آب زیرزمینی در حدود هشت درصد حوضه آبخیز، بیش‌تر در خروجی حوضه است. بر اساس نمودار VIP لایه‌ TWI با مقدار 329/0 و لایه فاصله از رودخانه با مقدار 175/0 به ترتیب بیش‌ترین و کمترین عامل‌های تأثیرگزار بر توان آب زیرزمینی با مقادیر بود. سطح زیر منحنی AUC نشان‌دهنده‌ی دقت 87 درصدی در مرحله‌ی آموزش برای شناخت منطقه‌های دارای توان آب زیرزمینی بود. نتیجه‌ی این پژوهش می تواند در مدیریت آب زیرزمینی در حوضه آبخیز قوریچای در رابطه با افزایش جمعیت و همچنین گسترش ساخت و ساز انسانی و توسعه کشاورزی منطقه به کار برده شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Spatial modeling of groundwater capacity using a combination of maximum entropy method and random forest method in GIS environment Case study: Ardabil Ghorichay catchment

نویسندگان [English]

  • Jafar Jafarzadeh 1
  • Meysam Argany 2

1 Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran

2 Department of Remote Sensing and GIS - Faculty of Geography - University of Tehran

چکیده [English]

Groundwater is one of the most important natural resources in arid and semi-arid regions. The purpose of this study is to identify areas that have groundwater capacity and to prioritize the factors affecting it. In this study, 11 indicators affecting groundwater capacity including Slope, Elevation, Aspect, Distance from River, Drainage Density, Distance from Fault, Topographic Wetness Index, and Topographic Position Index, lithology, Land use and Relative Slope Position were used. 30% of the totals of 230 wells were randomly placed in the validation data group and 70% in the training data. To prioritize the effective factors and zoning of groundwater potential in Ghorichay watershed, the random forest method was used using ArcGIS and to evaluate the model of relative performance curve (ROC) and Area Under the curve surface (AUC). The results showed that the groundwater capacity of about 8% of the watershed is higher at the outlet of the watershed. According to the VIP diagram, the TWI layer with a value of 0.329 and the distance from the river layer with a value of 0.175 was the most and the least influential factors on groundwater capacity, respectively. The area below the AUC curve showed an accuracy of 87% in the training phase to identify areas with groundwater potential. The result of this study can be used in groundwater management in the Ghorichay watershed.

کلیدواژه‌ها [English]

  • Groundwater
  • Random Forest
  • Zoning
  • Spatial Modeling
  • GIS
  • Maximum Entropy
  • Ghorichay catchment
  • North Western Iran
British Columbia, Ministry of Forests. (2003). Karst Management Handbook for British Columbia. www.publications.gov.bc.ca.
Coon, C. S., (1951). Cave Explorations in Iran 1949, Museum Monographs, The University Museum, University of Pennsylvania, Philadelphia.
El-Naqa, A., Hammouri, N., Ibrahim, K., & El-Taj, M. (2009). Integrated approach for groundwater exploration in wadi Araba using remote sensing and GIS. Jordan Journal of Civil Engineering, 3(3): 229-243.
Ford, D.C., & Williams, P.W. (1989). Karst geomorphology and hydrology. 601 pp Springer Netherlands.
Ghobadi, M. (2010). Geology of Karst Engineering. Second Edition, Bou Ali Sina University Press, Hamadan, Iran. (In Persian)
Haji Hosseinlou, H. (2015). Kinematics of Transpressional Deformation in Urmia Fault Zone, (Northwest Iran). Iranian Journal of Earth Scinces, Vol 7, 59-67.
Haji Hosseinlou, H., & Abbasian Valandar, R. (2018). Evaluation and zoning of risk of rock falls in the Band area of Urmia (Urmia-Silvana Road path) using Anbalagan method. Journal of Geography and Enviromentsal Hazards, 8 (1): 83-102. (In Persian).
Hammouri, N., El-Naqa, A., & Barakat, M. (2012). An integrated approach to groundwater exploration using remote sensing and geographic information system. Journal of Water Resource and Protection, 4 (9): 717-724.
Hsin-Fu, Y., Cheng-Haw, L., Kuo-Chin, H., & Po-Hsun, c. (2008). GIS for the assessment of the groundwater recharge potential zone. Environ Geology Journal, Springer verlage, 10(1): 1504-1509.
Kalantari, N., Mahdipour, M., & Hamrayan Azad, V. (2017). The effect of structural and morphological phenomena on the emergence, nutrition, and turbidity of the Gerdab spring in the northeast of Andimeshk, Khuzestan province. Journal of Hydrogeomorphology, No. 9, p. 87–112. (In Persian).
Khedri, A., Rezaei, M., & Ashjari, J. (2014). Assessing Karst Development Potential in Pion Poyon Anticline using GIS, RS and Analytical Hierarchy Process (AHP). Iran-Water Resources Research, 9(3), 37-46. (In Persian).
Mahmoudi, F. (2007). Structural Geomorphology. Eighth Edition, Payame Noor Publications. (In Persian).
Maleki, A., Shahwani, D., & Alaiee Talegani, M. (2011). Karst evolution zoning in Kermanshah province, Journal of Human Science, No 1, pp 295-271. (In Persian).
Parise, M. (2008). Rock failures in karst. Landslides and Engineered Slopes – Chen et al. (eds). Conference Paper, London, ISBN 978-0-415-41196-7
Parise, M., & Gunn, J.(eds). (2007). Natural and Anthropogenic Hazards in Karst Areas: Recognition, Analysis, and Mitigation. Geol. Soc. London, sp. publ. 279, 202 pp.
Prasad, R. K., Mondal, N. C., Pallavi, B., & Nandakumar, MV. (2007). Deciphering potential groundwater zone in hard rock through the application of GIS, Environ Geology Journal, Springer-Verlag, 55(3): 467-475.
Rasouli, A., Emami, K., Babakhani, Z., & golshanizad, S. (2020). Karst development zoning to identify karst water resources using Fuzzy logic model and AHP (Takab Basin). Geography and Human Relationships, 2(4), 240-253. (In Persian).
Saaty, T.L. (1980). The Analytic Hierarchy Process, Mcgraw _ Hill, Inc., Reprinted By RWS Publications, Pittsburgh.
Shahrabi, M. (1986). Description of the geological map of Urmia square 1: 250,000. Ministry of Mines and Metals, Geological Survey of Iran. (In Persian).
Senakhan, A., Pourkermani, M., Haji Hosseinlou, H., & Hassanpour Sadeghi, M. (2013). Tectonic and seismic assessment of the Nazlo region of Urmia, northwestern Iran. 31st Earth Sciences Conference, Tehran, Geological Survey of Iran. (In Persian).
Sener, A., Davraz, A., & Ozcelik, M. (2005). An Integration of GIS and remote sensing in groundwater investigations: a case study in burdur, Turkey, Hydrogeology Journal, 13(6): 826-834.
Sepand, S., Chitasazan, M., Rangzan, K., & Mirzaei, Y. (2008). Combining Remote Sensing and GIS in the Potential Discovery of Groundwater Resources in the Lali Area. Tehran Geomatics Conference. (In Persian)
Subba Rao, N., Chakradhar, G., & Srinivas, V. (2001). Identification of groundwater potential zones using remote sensing techniques in and around Guntur Town, Andhra Pradesh India Journal of India society of Remote Sensing, 29(2): 69-78.
Tirla, L., Vijulie, I. (2013(. Structural–tectonic controls and geomorphology of the karst corridors in alpine limestone ridges: Southern Carpathians, Romania. Geomorphology Journal, Vol.197, pp. 123–136.
Waele, j., Plan, L., & Audra, P. (2009). Recent developments in surface and subsurface karst geomorphology: An introduction. Geomorphology, 106 (1-2), 1-8.
Waezi Hir, A., Jabraili Andrian, N., & Bakhtiari, S. (2020). Study of karst development in Kurdistan province: Mechanism of formation of the geomorphology of caves and hydrogeology of karst springs. Journal of Hydrogeomorphology, No. 20, Year 5, p. 41-56. (In Persian)
White, E., & White, W. (1969). Processes of cavern breakdown. Bull. Natl. Speleol. Soc. 31 (4): 83–96.
Yamani, M., Shamsipour, A., Jafari Aghdam, M., & Bagheri Seyed shokr, S. (2013). The Effective Factors on Development and Zoning of Karst in Cheleh Basin Using Fuzzy logic and AHP Models in Kermanshah Province. Scientific Quarterly Journal of Geosciences, 22(88), 57-68. doi:10.22071/gsj.2013.53641.(In Persian).
Zeng, S., Jiang, Y., & Liu, Z. (2016). Assessment of climate impacts on the karstrelated carbon sink in SW China using MPD and GIS. Global and Planetary Change, Vol. 144, pp.171-181.
Zerosh, N., Vaezi, A., & Karimi, H. (2015). Evaluation of karst development potential in the Kabir mountain anticline of Ilam province using fuzzy combination and Analytic Hierarchy Process (AHP) and remote sensing and GIS. Year 3, Number 3, pp. 144–157. (In Persian)