نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری مخاطرات ژئومورفولوژیک، دانشگاه رازی، کرمانشاه، ایران

2 دانشیارگروه جغرافیا، دانشکدۀ ادبیات، دانشگاه رازی، کرمانشاه، ایران

چکیده

برداشت بی‌رویه از سفره‌های آب زیرزمینی در کشور سبب افت شدید سطح ایستابی آبخوان و از بین رفتن لایه‌های آبدار زمین گردیده است. در این پژوهش به منظور بررسی وضعیت تراز آب زیرزمینی آبخوان مرودشت- خرامه، واقع در استان فارس در رابطه با برداشت بی‌رویه‌ی آب‌های زیرزمینی از داده‌های 81 حلقه چاه پیزومتری در بازه‌ی زمانی (2008- 2018) با استفاده از مدل Modflow شبیه‌سازی انجام گرفت. هم‌چنین نتایج حاصل از محاسبه‌ی بیلان آبی تعداد7500 حلقه چاه بهره‌برداری در حوضه حاکی از آن است که میزان 1100 میلیون مترمکعب آب از ذخیره‌ی ثابت آبخوان در بازه‌ی 10 ساله کاسته شده است. با توجه به نقشه‌های درون‌یابی تهیه شده بیشترین میزان افت آب زیرزمینی مربوط به مناطق درودزن، رامجرد و شول اتفاق افتاده است. از این رو با آمار سازمان آب منطقه‌ای فارس مبنی بر وجود چاه‌هایی با آبدهی بالا در این مناطق هماهنگی دارد. با استناد به نقشه‌های تهیه شده از آبخوان مرودشت با توجه به آبرفتی بودن سفره‌ی آب زیرزمینی اثر افت سطح آب را می‌توان با فاصله مکانی کم مشاهده کرد. از سوی دیگر در نقشه‌های میان‌یابی ضریب پارامتر هدایت هیدرولیکی بیان‌کننده‌ی این است که میزان افت تراز آبخوان در مناطق شمال‌غرب، مرکز و جنوب شرق حوضه دارای بیشترین مقدار می‌باشد که با 11درصد خطای نسبی مؤید مدل‌سازی مناسب است. در نهایت با انجام دو سناریوی کاهش 10 و 30 درصدی، میزان تغییرات آب زیرزمینی در طی سال‌های 2018- 2028 پیش بینی شد و نتایج نشان داد که در سناریوی اول بیشترین میزان افت با 83/24 متر و کمترین افت نیز به میزان 184/2 متر است. در سناریوی دوم نیز افت به میزان 523/4 متر کاهش یافته و سطح ایستابی به 30/20 متر رسیده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Simulation of Marvdasht groundwater level and investigation of forecast scenarios using MODFLOW mathematical code

نویسندگان [English]

  • azam Heydari 1
  • Iraj Jabbari 2

1 Ph.D. Student, Department of Geomorphology, faculty Literature and Humanities, Razi University, Kermanshah, Iran

2 Associate Professor, Department of Geography, Razi University, Kermanshah, Iran

چکیده [English]

Irregular abstraction of groundwater aquifers in the country has caused a sharp decline in the aquifer water level and the destruction of aquatic aquifers. In this study, in order to investigate the groundwater level of Marvdasht-Kharameh aquifer, located in Fars province, in relation to the uncontrolled abstraction of groundwater from the data of 81 piezometric wells in the period (2018-2018), the Modflow model was simulated. Also, the results of calculating the water balance of 7,500 wells in the basin indicate that the amount of 1100 million cubic meters of water from the aquifer constant storage has been reduced over a period of 10 years. According to the prepared interpolation maps, the highest rate of groundwater loss has occurred in Dorodzan, Ramjerd and Shool areas. Therefore, it is in line with the statistics of the Fars Regional Water Organization that there are wells with high discharge in these areas. According to the maps prepared from Marvdasht aquifer, due to the alluvial nature of the groundwater aquifer, the effect of water level drop can be observed from a short distance. On the other hand, in the intermediate maps, the coefficient of hydraulic conductivity parameter indicates that the rate of aquifer drop in the northwest, center and southeast of the basin has the highest value, which is appropriate with 11% relative error confirms modeling. Finally, by performing two scenarios of 10 and 30% reduction,

کلیدواژه‌ها [English]

  • Aquifer balance
  • management scenarios
  • Groundwater level
  • MODFLOW Model
  • Marvdasht basin - Kharameh
 
Al-Salamah, L.S., Ghazaw, Y.M. and Ghumman, A.R. (2011). Groundwater modeling of Saq Aquifer Buraydah Al Qassim for better water management strategies. Environmental Monitoring and Assessment, 173 (1–4): 851–860.
Andaryani, S., Nourani, V., Trolle, D., Dehghani, M., Mokhtari Asl, A. (2019).  Assessment of land use and climate change effects on land subsidence using a hydrological model and radar technique. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.124070.
Ansari, M.; Jabari, I. Sargordi, F; (2021). Spatial modeling of water quality parameters based on geological formations; Journal of Hydrogeomorphology, 8 (26), 137-117.
Bayat Varkeshi, M., Farahani Dastjani, M., & Ghabaei Sough, M. (2018). Effect of meteorological drought on groundwater resources (Case study: Komijan aquifer in Markazi provience). Iran-Water Resource Research, 14(1):114-124.
Boyce, S.E., Hanson, R.T., Ferguson, I., Schmid, W., Henson, W., Reimann, T., Mehl, S.M., Earll, M.M., (2020). One-Water Hydrologic Flow Model: A MODFLOW based conjunctive-use simulation software: U.S. Geological Survey Techniques and Methods, 6–A60, p. 435. https://doi.org/10.3133/tm6A60.
 Boyce, S.E., (2020). MODFLOW One-Water Hydrologic Flow Model (MF-OWHM) Conjunc- tive Use and Integrated Hydrologic Flow Modeling Software, version 2.0.0. U.S. Geo- logical Survey Software Release, https://doi.org/10.5066/P9P8I8GS.
Condon, L.E., Maxwell, R.M., (2017). Systematic shifts in Budyko relationships caused by groundwater storage changes. Hydrol. Earth Syst. Sci. 21 (2).
Costa-Cabral MC, Burges SJ (1994). Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research, 30:1681–1692.
De Graaf, I.E.M., Sutanudjaja, S.H., Van Beek, L.P.H., Bierkens, M.F.P., 2015. A high- resolution global-scale groundwater model. Hydrol. Earth Syst. Sci. 19 (2), 823–837. https://doi.org/10.5194/hess-19-823-2015.
Shishir, G., Chaharb, B.R., and Didier, G. (2011). Combined use of groundwater modeling and potential zone analysis for management of groundwater, International Journal of Applied Earth Observation and Geoinformation, 13: 127–139.
Hanson, R.T., Boyce, S.E., Schmid, W., Hughes, J.D., Mehl, S.W., Leake, S.A., Mad- dock III, T, Niswonger, R.G., (2014b). One-water hydrologic flow model (MODFLOW- OWHM). US Geol. Surv. https://doi.org/10.3133/tm6A51.
Hester, E.T., Hammond, B. and Scott, D. T. (2016). Effects of inset floodplains and hyporheic exchange induced by in-stream structures on nitrate removal in a headwater stream. Ecological Engineering, 97, 452–464.
Hu, Y., Moiwo, J.P., Yang, Y., Han, S., Yang, Y. (2010). Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain, Journal of Hydrology, 393(3-4): 219–232.
Teymouri, M., & Asadi Nalivan, he. (2020). Assessing the Impact of Land Use and Geology on Groundwater Quality Using Multivariate Statistical Models and Geostatistical Analysis (Case Study: Part of the Hubble River Basin), Journal of Hydrogeomorphology, 7 (25): 97-121.
Tian, Y., Zheng, Y., Wu, B., Wu, X., Liu, J. and Zheng, C. (2015). Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environmental Modelling and Software, 63, 170–184.
Tsai TL, Tsai PY, Yang PJ (2015). Probabilistic modeling of rainfall-induced shallow landslide using a point-estimate method. Environmental Earth Sciences 73(8):4109-4117.
Ondeck, N.T., Bohl, D.D., Bovonratwet, P., McLynn, R.P., Cui, J.J., Shultz, B. N. and Grauer, J.N. (2018). Discriminative ability of commonly used indices to predict adverse outcomes after poster lumbar fusion: a comparison of demographics, ASA, the modified Charlson Comorbidity Index, and the modified Frailty Index. The Spine Journal, 18(1), 44–52.
Liu, C.W., Lin, C.N., Jang, C.S., Chen, C.P., Chang, J.F., Fan, C.C. and Lou, K.H. (2006). Sustainable groundwater management in Kinmen Island. Hydrological Processes, 20: 4363–4372.
Liu, C.W., Chou, Y.L., Lin, S.T., Lin, G.J. and Jang, C.S. (2010). Management of high groundwater level aquifer in the Taipei Basin. Water Resources Management, 24 (13): 3513–3525.
Li L, Xia J., Xu C.Y., Chu, J., Wang, R. (2009). Analyse the sources of equifinality in hydrological model using glue methodology, IAHS publication, 331(4):130-138.
Liu, W., Park, S., Bailey, R.T., Molina-Navarro, E., Andersen, H.E., Thodsen, H., Nielsen, A., Jeppesen, E., Jensen, J.S., Jensen, J.B., Trolle, D., (2019). Comparing SWAT with SWATMODFLOWhydrological simulations when assessing the impacts of groundwater abstractionsfor irrigation and drinking water. Hydrol. Earth Syst. Sci. Discuss. 2019, 1–51. https://doi.org/10.5194/hess-2019-232.
Liu, W., Bailey, R.T., Andersen, H.E., Jeppesen, E., Park, S., Thodsen, H., Nielsen, A., Wei, X., Bailey, R.T., (2019). Assessment of system responses in intensively irrigated stream–aquifer systems using SWAT-MODFLOW, Water, 11, 1576.
McDonald, M.G., Harbaugh, A.W., (1988). A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model (PDF), Techniques of Water-Resources Investigations, Book 6. U.S. Geological Survey, Reston, VA.
McDonald, M.G. and Harbaugh, A.W. (1988). A modular three-dimensional finite difference groundwater flow model. US Geological Survey Open-file Report. PP. 83-875.
MacDonald, A.M., Bonsor, H.C., Dochartaigh, B.E.O. & Taylor, R.G. (2012).Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 7, 024009.
Mittelstet, A.R., Smolen, M.D., Fox G.A. and Adams D.C. (2011). Comparison of aquifer sustainability under groundwater administrations in Oklahoma and Texas. Journal of the American Water Resources Association, 47 (2): 424–431.
M.O. Cuthbert, An improved time series approach for estimating groundwater recharge from groundwater level fluctuations, Water Resour. Res. 46 (2010). W09515. Tian, Y., Zheng, Y., Wu, B., Wu, X., Liu, J. and Zheng, C. (2015). Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environmental Modelling and Software, 63, 170–184.
Molina-Navarro, E., Trolle, D., (2020). Assessing the impacts of groundwater abstractions on flow regime and stream biota: combining SWAT-MODFLOW with flow-biota empirical models. Sci. Total Environ. 706, 135702. https://doi.org/10.1016/j.scitotenv.2019.135702.
Molina-Navarro, E., Bailey, R.T., Andersen, H.E., Thodsen, H., Nielsen, A., Park, S., Jensen, J.S., Jensen, J.B., Trolle, D., (2019). Comparison of abstraction scenarios simulated by SWAT and SWAT MODFLOW. Hydrol. Sci. J. 64, 434–454.
      https://doi.org/10.1080/02626667.2019.1590583.
Mostaza-Colado, D., Carreño-Conde, F., Rasines- Ladero, R. and Iepure, S. (2018). Hydrogeochemical characterization of a shallow alluvial aquifer: 1 baseline for groundwater quality assessment and resource management. Science of the Total Environment, 639, 1110–1125.
Mittelstet, A.R., Smolen, M.D., Fox G.A., and Adams, D.C. (2011). Comparison of aquifer sustainability under groundwater administrations in Oklahoma and Texas. Journal of the American Water Resources Association 47 (2): 424–431.
Mesmarian, Z., Bouani, A., Pir Bazari, SJ. (2016). The effect of climate change on the groundwater balance of Shahrekord plain in future periods. Ecohydrology, 3(2):233-242 (In Persian).
Mohammadi S, Naseri F, Nazaripour H (2017). Investigation of temporal changes and the effect of meteorological drought on groundwater resources of Kerman plain using standard precipitation indicators (SPI) and groundwater resources (GRI). Ecohydrology, 5(1):22-11 (In Persian).
Mirlas, V. (2012). Assessing soil salinity hazard in cultivated areas using MODFLOW model and GIS tools: A case study from the Jezre’el Valley. Agricultural Water Management 109: 144– 154.
Mohammadi, A., karami. G., Dolati Ardejani, F. (2015). Aquifer management study using PMWIN model, case study: Shirvan aquifer, Water Resources and Development, 1 (3): 67-75 (in Persian).
Nazemi, Ali, Ashraf, Samaneh, AghaKouchak, Amir (2021). Anthropogenic drought dominates groundwater depletion in Iran nature.com/scientificreportshttps://doi.org/10.1038/s41598-021-88522-y, www.nature.com/reprints.
Wu, JC, Lu, L., Tang, T. (2011). Bayesian analysis for uncertainty and risk in a groundwater numerical model's predictions. Human and Ecological Risk Assessment: An International Journal, 17(6):1310-1331.
Rahimi, R., Rahimi, M. (2019). Spatial and temporal analysis of climate change in the coming years and comparison of micro-scale methods of SDSM, LARS-WG and artificial neural network in Khuzestan province. Ecohydrology, 5(4):1174-1161 (In Persian)
Rajabi Khamseh, K,A. Nikbakht Shahbazi, H. Fathian1, and N. Zohrabi1 (2021). Izeh Plain Subsidence Modeling Using MODFLOW Mathematical Code, Iran-Water Resources Research, 16(4): 112-126, Winter 2021 (IR-WRR).
Woessner, W.W. (2017). Hyporheic Zones. Methods in Stream Ecology. Elsevier Inc.
Yang, T., Cui, T., Xu, C.-Y., Ciais, P., Shi, P., (2017). Development of a new IHAmethod for impact assessment of climate change on flow regime, Glob. Planet. Chang, 156, 68–79.
Yoon H, Hart DB, McKenna SA (2013). Parameter estimation and predictive uncertainty in stochastic inverse modeling of groundwater flow: Comparing null‐space Monte Carlo and multiple starting point methods, Water Resources Research, 49(1):536-553
Yuan W, Cai W, Nguy-Robertson AL, Fang H, Suyker AE, Chen Y, Zhang H. (2015). Uncertainty in simulating gross primary production of croplad ecosystem from satellite-based models. Agricultural and Forest Meteorology, 207: 48–57.
Zhang, J., Song, J., Long, Y., Kong, F., Wang, L., Zhang, Y. and Hui, Y. (2017). Seasonal variability of hyporheic water exchange of the Weihe River in Shaanxi Province, China. Ecological Indicators, 92, 278-287.
Zhou Y. and Li W. (2011). A review of regional groundwater flow modeling. Geoscience Frontiers, 2(2): 205-214.