نوع مقاله : پژوهشی

نویسندگان

1 استاد ژئومورفولوژی، گروه GIS&RST، دانشکده برنامه ریزی وعلوم محیطی، دانشگاه تبریز

2 دانش آموخته ی GIS & RS، دانشکده ی برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

3 دانشیار گروه RS&GIS، دانشکده‌‌ی برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

چکیده

در این مقاله با استفاده از مدل‌های DRASTIC و فازی ،پتانسیل آلودگی آبخوان و همچنین پهنه بندی کیفیت آب زیرزمینی با شاخص GQI دشت تبریز بررسی و مورد ارزیابی قرار گرفت.در این ارزیابی، از نرم افزار Arc map و همپوشانی هفت لایه اطلاعاتی: عمق سطح آب، تغذیه خالص، محیط آبخوان، جنس خاک، توپوگرافی، محیط غیر اشباع، هدایت هیدرولیکی بهره گیری شد.نتایج بررسی ها و ارزیابی ها با استفاده از مدل در استیک نشان داد که، شاخص آسیب پذیری 57 تا 165 است که در تقسیم بندی توصیفی در طبقات بدون خطر آلودگی تا خطر آلودگی زیاد قرار می‌گیرد. نتایج حاصل از مدلسازی فازی نیز نشان داد که47درصد از مساحت دشت ،دارای آسیب پذیری زیاد است . نقشه های ترسیمی نیز نشان می دهد که در هر دو نقشه حاصل از دور روش مورداستفاده ، قسمت‌های شمال غربی تا جنوب غربی که محل قرار گیری شهر تبریز می‌باشد، بیشترین پتانسیل و قسمت‌های جنوب غربی کمترین پتانسیل برای آلودگی را دارا می‌باشد. در نهایت ،با استفاده از شاخص GQI و بر اساس استاندارد شرب WHO و با بهره گیری از ده پارامتر: هدایت هیدرولیکی، کلر، کلسیم، بیکربنات، منیزیم، پتاسیم،کل جامدات محلول، سدیم، سولفات و سختی کل ، شاخص کیفی منطقه مورد مطالعه بررسی شد و نتیجه حاصل نشان داد که کیفیت آب در قسمت‌های پر خطر(شمال غربی و جنوب غربی آبخوان) که بر اساس دو مدل پیشین شناسایی شده ،دارای کمترین شاخص کیفیت نسبت به قسمت‌های جنوب شرقی آبخوان می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation and Assessment of Groundwater Vulnerability to Pollution using DRASTIC Model and Fuzzy Logic

نویسندگان [English]

  • maryam bayatikhatibi 1
  • Faeze Rostami 2
  • Khalil Valizadeh Kamran 3

1 Professor of Geomorphology, Department of GIS & Remote Sensing Faculty of Geography & Planning science

2 M.Sc. Gis and RS Student, Department planning and environmental science, University of Tabriz,Tabriz, Iran.

3 Associate Professor, Department of GIS & Remote Sensing , Faculty of Planning and Environmental Sciences, University of Tabriz,Tabriz, Iran.

چکیده [English]

In the Drastic model, the vulnerability index was obtained from 57 to 165, which is in the descriptive division into classes without risk to high risk of pollution, which if we consider three classes without risk of pollution to low pollution, we can say 44% of the total area of the plain is located on these three classes. Also, three classes of low to high, occupy 46% of the plain area. In fuzzy modeling, after scaling and overlapping seven input layers, we prepared the final map, which according to the index of this modeling, 47% of the total area of the plain has high vulnerability, that the result obtained is very similar to the result of DRASTIC method, but by comparing the two methods, it becomes clear that the fuzzy model is more accurate than the drastic method. In both maps, the northwestern to southwestern parts where the city of Tabriz is located, have the highest potential for pollution and the southwestern parts, which include the Sahand Mountains, have the lowest potential for pollution. Finally, using GQI index and according to drinking standard WHO and using ten parameters: hydraulic conductivity, chlorine, calcium, bicarbonate, magnesium, potassium, total soluble solids, sodium, sulfate and total hardness which are taken from wells in the plain, In high-risk areas, due to the high percentage of total soluble solids, total hardness and high hydraulic conductivity, water quality has also decreased and descriptively, the water quality of Tabriz plain is in the acceptable to appropriate range.

کلیدواژه‌ها [English]

  • DRASTIC model
  • Fuzzy logic
  • GQI water quality index
  • Tabriz plain
Abbasi, Sorayya; Masoud Heydari (2017). The Groudwater Potential Assessment by the Use of AHP and Fuzzy Technuques (Case Study of Northern Basins of Ilam Province), Hydrogeomorphology, 3(6): 75-93, Winter 2017.
Ansari, Maryam; Iraj Jabbari; Farhang Sargordi (2021). Spatial Modelling of Water Quality Parameters Based on Geological Formations, Hydrogeomorphology, 8(26): 137-117, Spring 2021, http://dx.doi.org/10.22034/hyd.2021.44081.1571.
Biabani, Leila; Arash Malekian; Behrooz Akbarpoor (2020). Evaluation of Groundwater Potential of Sufi Chay Basin Using Frequency Ratio Models and GIS, Hydrogeomorphology, 7(22): 43-65, Spring 2020, http://dx.doi.org/10.22034/hyd.2020.10804.
Bayatikhatibi M,.(2020). Investigating the Role of Land Use Changes in Hydrological Changes of Surfaces in Mountainous Area, Case Study: Ojan Chay Basin, Journal of Hydrogeomorphology, No 24, 127-144.
Heatishmati, S.S., Beigi, Harchgani, H. (2014). A GIS-Based Assessment of drinking of quality of shaerekord groundwater using and index, JWSS - Journal of Water and Soil Science, Vol.18,No 69, 179-190.
Daneshvar Vousoughi, Farnaz; Vahid Manafianazar (2019). Using Hybrid Wavelet-Support Vector Machine and Wavelet-Neural Network Models for Groundwater Level Prediction in Ardabil Plain, Hydrogeomorphology, 5(17): 45-64, Winter 2019.
Cashman P. M. and Preene M., (2001). Groundwater lowering in construction: a practical guide. USA and Canada (Book).
Hassanzadeh, Mehrdad; Mehdi Momeni Reghabadi; Amir Robati (2021). Vulnerability of Hajiabad plain aquifer based on DRASTIC and SINTACS models, Hydrogeomorphology, 8(26): 202-183, Spring 2021, http://dx.doi.org/10.22034/hyd.2021.45261.1584.
Karami, F., Bayatikhatibi, M., (2012). Spatial monitoring of groundwater quality characteristics in different geological formations: case study of upper Aji-chai basin, Journal of Geography and Regional Development Reseach Journal, No 17.PP.45-63.
Khodaei, K., Shahsavari. A.A., Etebari. B. (2006). Evalution of aquifer vulnerability of JOVEIN PLAIN using DRASTIC and gods methods, IRANIAN JOURNAL OF GEOLOGY SPRING 2006, 2(4): 37-87.
Khorshiddoust A, M, Valizadeh Kamran Kh, Ghasemi Bghtash A. (2018). Analysis of temporal-spatial distribution of dangerous contaminants in Tabriz with emphasis on PM10, Journal: PHYSICAL GEOGRAPHY RESEARCH QUARTERLY, winter 2018, 49 (4), 585 To 602.
Nakhostin Rouhi, M., Rezaei Moghaddam, M., Rahimpour, T. (2017).Groundwater vulnerability zonation using DRASTIC and SI models in GIS (Case Study: Ajabshir Plain), Iranian Journal of ECO HYDROLOGY, 4(2): 587-599.
Napolitano, P. (1995).GIS for aquifer vulnerability assessment in the Piana Campana, southern Italy, using the DRASTICand SINTACS Methods. MSc thesis, I TC, Enschede, The Netherlands.
Machiwal, D., Jha M.K, Mal B.C. (2011). GIS-based assessment and characterization of groundwater quality in a hard-rock hilly terrain of Western India, Environ. Monit. Assess, 174 (1–4) (2011), 645-663.
Maghami Moghim, GholamReza; AliAkbar Taghipour; Houshang Khairy. (2020). Investigating Human Positive Impacts on the Changes in Groundwater Level of Safiabad Plain of Esferayen, Hydrogeomorphology, 6(21): 23-42, Winter 2020, Pages. 
Mogaji K.A, San Lim H, Abdullar Kh. (2014). Modeling groundwater vulnerability to pollution using Optimized DRASTIC model, IOP Conference Series: Earth and Environmental Science. IP Address: 202.170.57.249.
Mohamed, A.A., Mohamed & Tetsuya Hiyama (2007). Assessing groundwater quality using GIS, Water Resources Management, volume 21, pages 699–715.
Nasir Ahmad Gesim, Takeo Okazaki (2018). Assessment of Groundwater Vulnerability to Pollution using DRASTIC Model and Fuzzy Logic in Herat City, Afghanistan.
Piscopo, G. (2001). Groundwater vulnerabilitymap, explanatory notes, Castlereagh Catchment, NSW. Department of Land and Water Conservation, Australia (Book).
Soltani Asghari Moghaddam, A., Barzegar, R., Kazemian N. (2017). Identifying Effective Processes on Groundwater Chemistry of the Kordkandi Duzduzan Plain Aquifer, Journal of water and soil Science, 27(2): 77-89.