نوع مقاله : پژوهشی

نویسندگان

1 علوم و مهندسی آب , دانکشده کشاورزی , دانشگاه بیرجند

2 دانشیار گروه علوم و مهندسی آب، رشته‌ی آبیاری و زهکشی، دانشکده‌ی کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

آلودگی منابع آب زیرزمینی به علت نفوذ آلاینده ­ها از سطح زمین به سامانه آب زیرزمینی به­ ویژه در مناطق خشک و نیمه­ خشک که با کمبود کمی و کیفی منابع آب روبه ­رو هستند، یکی از معضلات جدی به شمار می­آید. بنابراین ارزیابی آسیب­ پذیری آب زیرزمینی به منظور شناسایی مناطق دارای پتانسیل بالای آلودگی برای مدیریت منابع آب زیرزمینی امری ضروری است. در این پژوهش آسیب ­پذیری آبخوان دشت کرمانشاه در برابر آلودگی با استفاده از روش دراستیک مورد بررسی قرار گرفت. در مدل دراستیک هفت متغیر مؤثر در آسیب­ پذیری که شامل عمق سطح ایستابی، تغذیه ­ی خالص، محیط آبخوان، محیط خاک، توپوگرافی، محیط غیراشباع و هدایت هیدرولیکی است، به صورت هفت لایه ­ی رستری تهیه و پس از رتبه ­دهی و وزن­ دهی شاخص دراستیک تعیین، که مقدار آن ما بین 45 تا 115 حصول گردید. بنابراین هدف اصلی این پژوهش بهبود مدل دراستیک با استفاده از مدل بیان ژن که یکی از مدل­ های هوشمند که عملکرد خوبی را از خود نشان داده است و به صورت ترکیبی می­تواند با مدل­ های دیگر هماهنگ شده و نتایج مورد پذیرشی را ارائه دهد استفاده گردید. بدین منظور متغیرهای دراستیک با طول دوره­ ی آماری 20 ساله (1378-1398) به عنوان ورودی مدل و غلظت نیترات به عنوان خروجی مدل تعریف شد. در مدل GEP داده ­ها به دو دسته آموزش و آزمایش تقسیم  و با استفاده از شاخص­ های آماریR2 ،NRMSE  و MAE نتایج شبیه ­سازی مدل بیان ژن مورد ارزیابی قرار گرفت. نتایج حاکی از توانایی بالای مدل در برآورد غلظت نیترات و بهبود مدل DRASTIC را داشت. برای صحت ­سنجی و بهبود مدل DRASTIC از روش امتیازبندی شاخص آماریR2  استفاده گردید. با حذف دو شاخص S و T فرمول اصلاح شده شاخص دراستیک بر پایه ­ی وزن­ده ی به صورت (5D , 4R, 5A , 5I, 4C) حاصل گردید.

کلیدواژه‌ها

عنوان مقاله [English]

Improving DRASTIC Model by Planning Gene Expression in Determining Aquifer Vulnerability to Nitrate (Case Study: Kermanshah Plain)

نویسندگان [English]

  • erfan bahrami 1
  • Ali Shahidi 2

1 water resource management ,agriculture, Birjand, birjand, iran

2 Water engineering Dept. Faculty of Agriculture University of Birjand Birjand Iran

چکیده [English]

were prepared as seven raster layers, and after ranking and weighing, the obtained DRASTIC index ranged between 45 and 115. Yet, as far as the model's major problem is applying expert opinions in ranking and weighing the variables, the main purpose of this study is to improve the DRASTIC model by using the gene expression model, which as an intelligent model has shown a desirable performance. Also, in a mixed form, it can cope with other models to provide acceptable results. Thus, DRASTIC variables of a 20- year statistical period (1999-2009) were defined as the model input, and nitrate concentration was defined as its output. Data in GEP model were divided into two categories: training and experimentation. Moreover, using the statistical parameters (R2, RMSE, MAE and r), the simulation results of the gene expression model were evaluated. The results indicate the model's high ability in estimating nitrate concentration and its high capability in improving DRASTIC model. For validation and improvement of DRASTIC model, statistical parameters, R2 and r, were used, which were specified according to the error of the range model. Also, for each time combining the parameter with the GEP model, a score was gained during different stages and repeated performances of the weight ranking model using weighing rank model of each parameter. Finally, by removing two parameters, S and T, the modified formula of the DRASTIC index which was obtained based on weighing was 5D, 4R, 5A, 5I, and 4C.

کلیدواژه‌ها [English]

  • Drastic
  • Gene expression programming
  • Nitrate
  • Vulnerability
  • Kermanshah plain
  • West of Iran
 
Asghari Moghaddam, A., Nadiri, A., & Pakniya, V. (2016). Vulnerability Assessment of Bostan Abad Plain Qquifer by DRASTIC and SINTACS Models. Hydrogeomorphology2(8), 21-52.
Asefi, M., Radmanesh, F., & Zarei, H. (2014). Optimization of DRASTIC model for vulnerability assessment of groundwater resources using analytical hierarchy process (case study: Andimeshk plain). Irrigation Sciences and Engineering37(1), 55-67
Ahirwar, S., & Shukla, J. P. (2018). Assessment of groundwater vulnerability in upper Betwa river watershed using GIS based DRASTIC model. Journal of the Geological Society of India91(3), 334-340.
Al-Adamat, R. A., Foster, I. D., & Baban, S. M. (2003). Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Applied Geography23(4), 303-324.
Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., & Hackett, G. (1987). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic, 2(3), 148-162.
Bahrami, E., Mohammadrezapour, O., Salarijazi, M., & Jou, P. H. (2019). Effect of base flow and rainfall excess separation on runoff hydrograph estimation using gamma model (case study: Jong catchment). KSCE Journal of Civil Engineering23(3), 1420-1426.
Dizaji, A. R., Hosseini, S. A., Rezaverdinejad, V., & Sharafati, A. (2020). Groundwater contamination vulnerability assessment using DRASTIC method, GSA, and uncertainty analysis. Arabian Journal of Geosciences13(14), 1-15.
Emamgolizadeh, S., Bateni, S. M., Shahsavani, D., Ashrafi, T., & Ghorbani, H. (2015). Estimation of soil cation exchange capacity using genetic expression programming (GEP) and multivariate adaptive regression splines (MARS). Journal of Hydrology529, 1590-1600.
Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. 
Guo, Q., Wang, Y., Gao, X., & Ma, T. (2007). A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan basin, northern China. Environmental Geology52(5), 923-932.
Jha, M. K., & Sahoo, S. (2015). Efficacy of neural network and genetic algorithm techniques in simulating spatio‐temporal fluctuations of groundwater. Hydrological processes29(5), 671-691.
Karimi, S., Shiri, J., Kisi, O., & Shiri, A. A. (2016). Short-term and long-term streamflow prediction by using'wavelet–gene expression'programming approach. ISH Journal of Hydraulic Engineering22(2), 148-162.
Li, L., Wang, W., Gong, P., Zhu, X., Deng, B., Shi, X., ... & Zhai, T. (2018). 2D GeP: An unexploited low‐symmetry semiconductor with strong in‐plane anisotropy. Advanced materials30(14), 1706771.
Mehr, A. D. (2021). Seasonal rainfall hindcasting using ensemble multi-stage genetic programming. Theoretical and Applied Climatology143(1), 461-472.
Nadiri, A. A., Gharekhani, M., Khatibi, R., Sadeghfam, S., & Moghaddam, A. A. (2017). Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Science of the Total Environment574, 691-706.
Nematzadeh, M., Shahmansouri, A. A., & Fakoor, M. (2020). Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP. Construction and Building Materials252, 119057.
Panagopoulos, G. P., Antonakos, A. K., & Lambrakis, N. J. (2006). Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeology Journal14(6), 894-911.
Piscopo, G. (2001). Groundwater vulnerability map explanatory notes—Castlereagh Catchment. NSW Department of Land and Water Conservation, Australia.
Ramezani Sarbandi, M., Ghazavi, R., Dokhani, S., & Mortazavi, S. M. (2017). The Investigation of the Groundwater Vulnerability to Pollution Using DRASTIC and GODS Models (A Case Study: Rafsanjan Plain). Hydrogeomorphology3(10), 65-80.
Rajput, H., Goyal, R., & Brighu, U. (2020). Modification and optimization of DRASTIC model for groundwater vulnerability and contamination risk assessment for Bhiwadi region of Rajasthan, India. Environmental Earth Sciences, 79(6), 1-15.
Samey, A. A., & Gang, C. (2008). A GIS based DRASTIC Model for the assessment of groundwater vulnerability to pollution in West Mitidja: Blida City, Algeria. J Appl Sci3(7), 500-507.
Sener, E., & Davraz, A. (2013). Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal21(3), 701-714.
Singh, A., Srivastav, S. K., Kumar, S., & Chakrapani, G. J. (2015). A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environmental Earth Sciences74(7), 5475-5490.
Zakaria, N. A., Azamathulla, H. M., Chang, C. K., & Ghani, A. A. (2010). Gene expression programming for total bed material load estimation—a case study. Science of the total environment408(21), 5078-5085.
Zhang, H., Chen, W., & Liu, T. Y. (2021). Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning. arXiv preprint arXiv:2102.12677.