نوع مقاله : پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 عضو هیات علمی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

تغییر اقلیم و گرمایش جهانی یکی از مهم­ترین عوامل موثر بر تخریب منابع آب و خاک در مناطق خشک و نیمه ­خشک است؛ که باعث افزایش وقوع پدیده­ ی گرد و غبار می­گردد. هدف از این مطالعه ارزیابی عملکرد دو مدل ریزمقیاس ­سازی آماریSDSM  و LARSWG به منظور غربالگری کمی در پیش ­بینی سناریوهای اقلیمی و همچنین پیش ­بینی تغییرات اقلیمی در کانون گرد و غبار جنوب و جنوب شرق اهواز می­باشد. از مدل­ های سه بعدی جفت­ شده­ ی اقیانوسی- اتمسفری AOGCM با نام HadCM3، برای شبیه­ سازی متغیرهای اقلیمی دما، باد و بارش ؛ تحت سناریوهای انتشار B2 و A2 در دو دوره ­ی آینده نزدیک و دور استفاده شد. نتایج نشان دادند، داده ­های شبیه ­سازی شده هر دو مدل، نسبت به داده ­های مشاهده شده، در مقایسه با میانگین طولانی مدت دوره ­ی پایه، معنی­ دار و از همبستگی بالایی با ضریب تبیین بالا برای کلیه­ ی پارمترها از 87/0 تا 98/0، برخوردار هستند. در نهایت با تأیید وجود پدیده­ ی تغییر اقلیم در استان خوزستان و به ­خصوص در کانون بحرانی ریزگرد جنوب و جنوب شرق اهواز، مدل SDSM به دلیل استفاده مستقیم از مدل­های HadCM3 و داده­ های بزرگ مقیاس NCEP و نوع فرآیند شبیه ­سازی و همچنین ساختار ترکیبی در ریزمقیاس­ گردانی داده ­ها با RMSE، MAE و ME به ترتیب 97/0، 18/0 و 021/0؛ از دقت و صحت بالاتری نسبت به مدل LARSWG در شبیه ­سازی داده­ های اقلیمی در کانون گرد و غبار جنوب اهواز برخوردار است. همچنین مدل SDSM در شبیه ­سازی داده ­های دمایی روزانه و سرعت باد موفق تر عمل نموده و مدل LARSWG ، پیش­ بینی بهتری از پارامتر بارش روزانه داشته و دقت و صحت بالاتری نشان داد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of the performance of SDSM and LARSWG statistical downscaling models for quantitative screening in predicting climate scenarios (Case study: Dust center south and southeast of Ahvaz)

نویسندگان [English]

  • maryam baranpour 1
  • Bijan Khalili Moghadam 1
  • Amin zoratipour 2

1 Department of Soil Science, Agricultural Sciences and Natural Resources University of Khuzestan, Iran.

2 Assistant Professor, Department of Nature Science, Agricultural Sciences and Natural Resources University of Khuzestan, Iran

چکیده [English]

Abstract:
The climate change is a complex atmospheric-oceanic phenomenon on the global scale. Climate change and global warming is one of the most important factors affecting the degradation of water and soil resources in arid and semi-arid regions; Which increases the occurrence of dust phenomenon. The aim of this study was to evaluate the performance of two statistical downscaling models of SDSM and LARSWG for quantitative screening in predicting climate scenarios and also predicting climate change in the dust center of south and southeast of Ahvaz. In line with this goal, one of the three-dimensional paired oceanic models - AOGCM atmospheric general circulation called HadCM3, The results showed that the simulated data of both models, compared to the observed data, were significant compared to the long-term mean of the base period and had a high correlation with a high coefficient of determination (R2) for all parameters from 0.87 to 0.98. Finally, by confirming the existence of climate change in Khuzestan province , SDSM model due to direct use of HadCM3 models and large scale NCEP data and the type of simulation process and also Combined structure in data mining scale with RMSE, MAE and ME 0.97, 0.18 and 0.021, respectively; It has higher accuracy than LARSWG model in simulating climatic data in the dust center of southern Ahvaz. The SDSM model was also more successful in simulating daily temperature data and wind speed, and the LARSWG model had a better prediction of the daily precipitation parameter.

کلیدواژه‌ها [English]

  • Climatic Models
  • Scenario
  • HadCM3
  • Downscaling
  • Dust center
  • Ahvaz
Abbasi, H.R., (2021)). Physico-chmecial propertis of soils in khuzestan dust sources, technical report no, Research Institute Forests and Rangelands, Iran, p. 84.
Abkar, A. J., Habibnejad, M., Soleimani, K. And, e. Naqvi. (2013). Assessing the efficiency of the SDSM model in simulating temperature indicators in arid and semi-arid regions, Journal of Irrigation and Water Engineering Research, Fourth Year, No. 144: 1-17.
Aghashahi, M. Ardestani, M. Nicksokhan, MH. And Tahmasebi, B. (2012). Introduceand compare the LARS-WG model and SDSM in order to fine-scale environmental modeling studies of climate change, the Sixth National Confereceand Exhibition of Environmental Engineering, Tehran, p 10.
Ajamzadeh, A. and Mullaniya, M R. (2014). Comparison of the performens SDSM and LARS-WG Downscaling Case resources. ASCE, J. Water Resoures. Planning and Managmant. 125(4): 194-204.
Bakhshandeh Mehr, L. Soltani, S. Sepehr, A. (2014). Evaluation of the current situation of desertification and modalization of the Madalus model in the Segzi plain of Isfahan, Natural Resources of Iran, 66 (1), 27-41.
Chu, J.T., Xia, J., Xu, C. Y. and V.P. Singh. (2010). Statistical Downscaling of daily mean Temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China, Theoretical and Applied Climatology, Vol. 99, Issue 1: 149-161.
Dosti, M., Habibnejad, M., Shahedi, K., Mirighoubzadeh, M. H. (2013). Investigation of climatic characteristics of Tamar watershed, Golestan province in climate change conditions using LARS-WG model. Journal of Earth and Space Physics. Volume 39. Number 4, pp. 177-189.
Ebrahimian, N. (2012). Investigating the Uncertainty of the Impact of Climate Change on Plant-Water-Agricultural Performance in All of Iran with the AEZ / GIS Approach. Master Thesis, Department of Agricultural Engineering, Irrigation and Drainage, Faculty of Agricultural Engineering and Technology, University of Tehran. (In Persian)
Gordon C, Cooper C, Senior C.A, Banks H, Gregory J.M, Johns T.C, Mitchell J.F.B, and Wood R.A. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam, 16, 147–168.
Jahanbakhshasl, S. Khorshiddodt, A.M. Aalinejad, M.H. Pourasghar, F. (2017). The effect of climate change on temperature and precipitation considering the uncertainty of climate models and scenarios (Case study: Urmia Tea City Basin), Hydrogeomorphology, Vol.2, No.7, Summer 2017, pp: 107-122.
Hajjarpour, A. Yousefi, M. and Kamkar, B. (2014). Precision test of simulators LARS-WG, Weather Man and CLIMGE Ninthree different climatessimulated (Gorgan, Gonabad and Mashhad), Geographyand Development, University of Sistan and Baluchestan; 35: 201-216.
Hashemi, M. Z. Shamseldin. A Y. and Melville. B W. (2010). Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a Watershed, Stoch environmental Reserche Rick Assess, p 18.
Konami, Z. Eilldermi, A.R. Zeinivand, H. Nori. H. (2021). The effect of climate change on runoff of Silakhor Rahimabad catchment in Lorestan, Hydrogeomorphology, Vol.7, No.25, Winter 2021, pp: 1-17.
Momirović, N, Kadović, R., Perović, V., Marjanović, M., Baumgertel, A., (2019). Spatial assessment of the areas sensitive to degradation in the rural area of the municipality Čukarica. International Soil and Water Conservation Research, 7, 71–80.
Mushkooti, A. (2015). Application of statistical models in climate change assessment and its effects (LA RS-WG and SDSM models). Publications of Islamic Azad University, Research Sciences Branch, 190 pages.
Rezaei, M., Nehtani, M., Abkar, A. J., Rezaei, M. And m. Rigi's death. (2014). Evaluation of the Efficiency of Micro-Statistical Scale Model (SDSM) in Predicting Temperature Parameters in Two Dry and Extraterrestrial Climates (Case Study: Kerman and Bam), Watershed Management Management Journal, Fifth Year, No. 10: 117-131.
Shukla, R., Khare, D. and R. Deo. (2015). Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command area in Madhya Pradesh. India, 14th International Conference on Machine Learning and Applications, 75 P.
Valizadeh, J. Ziaei, S M. and Mazloumzadeh, S M. (2014). Assessing climate change impacts on wheat production (a case study), Journal of the Saudi Society of Agricultural Scienec, Vol 13, Issue 2, P 107-115.