نوع مقاله : پژوهشی

نویسندگان

1 دانشیار دانشگاه

2 دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ایران

چکیده

مدل­ های ریاضی با استفاده از معادلات حاکم بر انتقال، توزیع و انباشت رسوب­، یکی از روش‌های کارآمد برای پیش‌بینی و برآورد بار معلق رودخانه­ ها محسوب می‌شوند. در این بررسی بار معلق رودخانه سد آبشینه همدان با استفاده از مدل ­های USBR، منحنی حد وسط دسته­ ها، منحنی سنجه فصلی و FAO برآورد و ضمن نمونه ­برداری مستقیم از بار معلق، مدل‌ها با روش اصلاحی تبدیل لگاریتمی (CF1, CF2) و مدل آماری GS+ ارزیابی و مناسب‌ترین مدل برآورد بار معلق رودخانه انتخاب شد. نتایج نشان داد که مدل فائو به دلیل بررسی پارامترهای بیشتر در شرایط مرزی و کمترین مقدار ضرایب تصحیح CF1 و­CF2 و خطای کمتر میزان رسوبات بار معلق را با دقت و کارایی قابل‌قبول‌تری محاسبه نموده ­و از برازش و تطابق بیشتری با مقادیر رسوب مشاهداتی برخوردار است­­­. بررسی­ ها نشان می­ دهد که مدل‌های ﻣﺨﺘﻠﻒ هیدرولوژیکی ﻧﺘﺎﻳﺞ ﻣﺘﻔﺎﻭﺗﻲ ﻧﺴﺒﺖ ﺑﻪ ﻫﻢ ﺩﺍشته و­ تقسیم ­بندی داده ­ها برحسب زمان وقوع­، تأثیر فراوانی در کاهش خطا دارد­، به­ طوری­ که مدل فائو با کمترین درصد خطای نسبی و میانگین توان دوم خطابه ترتیب به میزان 58/99 درصد و 0001/0 به‌عنوان روش بهینه و مدل دوره­ ی مشابه هیدرولوژیکی با بیشترین درصد خطای نسبی به میزان 34/100و ضریب همبستگی پایین به‌عنوان نامناسب­­ ترین مدل برآورد رسوب معلق رودخانه­ ی آبشینه انتخاب شدند. نتایج نشان داد که مدل فائو در برآورد میزان رسوب معلق رودخانه با ضرایب تصحیح  CF1=1.24و CF2=1.46 وکمترین میزان خطا نسبت به مدل USBR خطی با­CF1=1.87 و CF2=1.97 و حد وسط با­CF1=2.43 و CF2=3.01از دقت بیشتری برخوردار است. پیشنهاد می­شود در مدل‌های برآورد بار معلق رودخانه‌ها بازنگری و از مدل‌های با کمترین خطا استفاده گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Optimization of the Best Model to Estimate Suspended Sediment Load of Abshine River Dam Hamedan

نویسنده [English]

  • mehran mohammadpanah moghadam 2

2 Faculty of Natural Resources and Environment, Malayer University, Iran

چکیده [English]

1-Introduction
At present, it is important to accurately predict the hydraulic parameters of flow and sediment for better operation and management of rivers.Today, quasi-two-dimensional mathematical models have been widely used as an optimal and efficient solution in the hydraulics of river flow and sedimentation Zahiri et al. (2018). Mathematical models are one of the most important and accurate tools for predicting the amount of sedimentation in riverbeds and dam reservoirs, which are based on the equations governing the phenomena affecting the transfer, sediment accumulation. Gholami,et al. (2017).
 Raeisi et al. (2019), in examining the temporal phenomena of the sediment measurement curve and comparing it with several statistical methods to estimate the suspended sediment load of Gamasiab watershed, showed that the time series model of the transfer function compared to other models used has higher performance.
 Lai et al. (2019) in a study of the capacity of current and sediment transfer with 3D model for open surface channels showed that the model of good simulation between flow and sediment for forecasting is presented and is well matched with experimental data.In the present study, an attempt has been made to examine and determine the most appropriate models for estimating the suspended sediment load of the watershed of Hamedan River by using different models.
2-Methodology
Abshineh basin is located in the southeast of Hamedan city and its river regime is under the semi-humid cold mountainous snow-rainy and permanent climate.In this study, the amount of sediment yield of Hamedan Abashineh dam watershed using USBR models, the middle curve of the categories Seasonal measurement curve and FAO method were estimated and while direct sampling of suspended load, the selected model by

 

logarithmic conversion error correction method (CF1, CF2) and GS + model were statistically analyzed and evaluated.
3-Results and Discussion
Examination of CF1 and CF2 correction coefficients shows that the FAO method has evaluated the amount of suspended sediment over time better than the two linear USBR methods and the intermediate method with the least amount of error.In the model without data segmentation, the FAO method with the lowest relative error percentage and the mean power of the second error was selected as the optimal method, and the similar hydrological period method was selected as the most inappropriate method for estimating suspended sediment in the basin. The results show that the USBR method follows the normal distribution to some extent and the FAO method follows the perfectly normal distribution.The results of data analysis in Kriging method show that the regression line fitted in USBR method is not well adapted and could not provide a complete analysis of sediment observation data. However, in the FAO method, it is observed that the computational data have a high and good agreement with the fitted regression line.
The results showed that FAO method, due to considering more parameters in boundary conditions and the lowest amount of correction coefficients of CF1 and CF2, estimates the amount of suspended sediment with the least amount of error compared to other methods over time with more acceptable accuracy and efficiency.Also, the results of the Gs + model show that the FAO method calculates suspended sediments more accurately in terms of tons per day and has more fit and consistency with the observed sediment values, and the USBR method has the least fit.
4- Conclusion
The output results of Gs + model and comparison of suspended load estimation in models show that FAO method due to more compatibility and accuracy, more accurate sedimentary fit with observational data and with least error, as the best model and USBR method with matching and fitting Less with observational data in the next degree and similar hydrological period with the highest relative error percentage of 100.34 and low correlation coefficient were selected as the most inappropriate method for estimating suspended sediment in the basin.Reviews show that hydrological models had different results than each other. So that in the model without data segmentation, FAO method compared to other methods with the lowest percentage of relative error and the average power of the second error as the optimal and appropriate method of more

accuracy and efficiency for estimating suspended sediment in a modified form in the Abshineh basin Hamedan.

کلیدواژه‌ها [English]

  • Suspended load
  • FAO model
  • USBR model
  • sediment rating curve
  • Abshineh Watershed
  • Hamedan
 
Abolfathi, D., Madadi, A., & Asghari, S. (­2018). Modeling the amount of river sediment using artificial neural network method (Case study: Golrood River), Journal of Quantitative Geomorphological Research, 7(2), 208-196.
Asadi, M., Fathzadeh, A., & Taghizadeh Mehrjerdi, R. (2017). Investigation of the effect of time scale (daily, monthly and annual) on the prediction of suspended sediment load, Journal of Hydrogeomorphology, 3(­10), 121-143.
Farajzadeh, M., Heidary, A. A., ­Mollashahi, M., & Rajabi Rostamabadi, N. (2017). Analysis and comparisonof suspended sediment intheCaspia and Central Iran watersheds, Journal of Hydrogeomorphology, 3(11), 59-82.
Gericke, A., Venohre, M. (­2012). Improving the estimation of erosion-related suspended solid yields in mountainous, non-alpine river catchments, Novembe, Environmental Modelling and Software, 37, 30–40.
Gholami, L., Ghorghi, H., Abdollahi, J., Khaledi, Z., & Darvishan, A. (2017). Comparison and evaluation of suspended sediment estimation methods using data classification (Case study: Doork Merk, Shirgah and Krikla water stations), Journal of Water Resources Research Iran­, 13(­3), 187-193.
Honarbakhsh, A., Fashin Niazi, A., Soltani, A., & Tahmasebi, P. (2019). Modeling the relationship between suspended sediments and hydrological and environmental characteristics of the basin (Case study: Dez Dam basin), Quantitative geomorphological research­, 8(1), 105-117.
Hu, B., Wang T.H., Yang, Z., & Sun, X. (2011). Temporal and spatial variations of sediment rating curves in the Changjiang (Yangtze River) Basin and their Implications, Quaternary International. 230: 34–43.
Iqbal, M., Ghumman, A.R., Haider, S., Hashmi, H. N., & Khan, M. A. (2019). Application of Godunov type 2D model for simulating sediment flushing in a reservoir, Arabian Journal for Science and Engineering, 44(5), 4289-4307.
Karami, F., Bayati Khatibi, M. (2019). Modeling soil erosion and prioritizing sediment production in Sattarkhan Ahar dam basin using MUSLE and SWAT models, Journal of Hydrogeomorphology, 18, (23), 119-141.
Lai, Y.G., &Wu,K.(2019).­AThree-Dimensional Flow andSedimenTransport Model for Free-Surface Open Channel Flows on Unstructured Flexible Meshes, Fluids, 4(1), 18-28.
Nasseri, F., Azari, M., Dastarani, M. T. (2018). Optimization of Coefficients of Sediment Measurement Equations Using Genetic Algorithm (Case Study: Ghazaghli and Bagh- -Abbasi Stations), Iranian Journal of Irrigation and Water, 9(­3), 82-98. (In Persian).
Noorani, V., & Mohsenzadeh, S. (2017). Estimation of Monthly Sediment Load of Aji Chai Basin Stations Using MPSIAC Model and Waterfall Microscale, Artery, Journal of Hydrogeomorphology, 3(­11), 83-103.
Ouda, M. (2019). Multiphase Modelling of Sediment Transport and Bed Erosion for the Study of Coastal Morphodynamics, KULeuven, Technology Campus Brugge, Belgium, October 2019.
Raeisi, M., Najafinejad, A., & AzimMohseni, M. (2019). Investigation of time phenomena of sediment measurement curve and its comparison with several statistical methods for estimating suspended sediment load (Case study: Gamasiab watershed), Journal of Basin Management Watershed, 20, 83-96.
Ramezanipour, E., Mosaedi, A., & Mesdaghi, M. (2017). Determining the most appropriate method for estimating suspended sediment based on error statistics (Case study -a number of sub-basins), Watershed Management Research Journal, 8 (15), 112-124.
Zahiri, A. R., Qoli Nejad, J., & Dehghani, A. (2018). Calculation of transverse distribution of river sediments using a quasi-two-dimensional mathematical model (Case study: Qarasu River), Journal of Water Resources Engineering, 11(­38), 83-93.
Zhang, W., Wei, X., Jinhai, Z., Yuliang, Z., & Zhang, Y. (2012). Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves, Continental Shelf Research, 38, 35-46.