نوع مقاله : پژوهشی

نویسندگان

1 استادیار پژوهشی بخش تحقیقات حافظت خاک و آبخیزداری، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات، آموزش و ترویج

2 دانشیار دانشکده منابع طبیعی و علوم دریایی دانشگاه تربیت مدرّس، مازندران، نور، خیابان امام خمینی، دانشکده منابع طبیعی و علوم دریایی

3 3 دانش آموخته کارشناسی ارشد سنجش از دور و GIS دانشگاه علوم و تحقیقات تهران و کارشناس حوزه کشاورزی کشت و صنعت میرزا کوچک خان شرکت توسعه

چکیده

تخمین نفوذپذیری خاک به کمک مولفه‌های مختلف فرسایش می‌تواند یک روش برآوردی مفید برای تعیین میزان نفوذپذیری خاک در کوتاه‌ترین زمان و با صرف کمترین هزینه باشد. در این پژوهش به منظور تعیین تخمین میزان نفوذپذیری خاک با استفاده از مولفه‌های مختلف فرسایش در کاربری‌های مختلف نهشته‌های سازند گچساران، بخشی از حوزه آبریزکوه گچ شهرستان ایذه با مساحت 1202 هکتار انتخاب گردید. در این تحقیق تعیین رابطه بین میزان نفوذپذیری خاک و مولفه‌های مختلف فرسایش مانند میزان رسوب و مقدار رواناب و زمان شروع آستانه رواناب و رسوب در کاربری‌های مختلف سازند گچساران به کمک رگرسیون چند متغیره انجام گرفت. سپس نمونه‌برداری مولفه‌های مختلف فرسایش در 6 نقطه و با 3 تکرار و در شدت‌های مختلف بارش 75/0، 1 و 25/1 میلی‌متر در دقیقه در سه کاربری مرتع، منطقه مسکونی و اراضی کشاورزی به کمک دستگاه شبیه ساز باران انجام شد. به منظور انجام تحلیل‌های آماری از نرم افزار SPSS و EXCELاستفاده گردید. نتایج نشان داد که به طور کلی بیشترین تاثیر‌گذاری مثبت و منفی مولفه‌های مختلف فرسایش در تخمین میزان نفوذپذیری خاک مربوط به میزان رسوب و شروع آستانه رواناب و رسوب در هر سه کاربری یاد شده و در سه شدت بارش 75/0، 1 و 25/1 میلی متر دقیقه می‌باشد و در این میان نقش میزان رسوب در تخمین میزان نفوذپذیری خاک نسبت به آستانه رواناب و رسوب اندکی بیشتر نشان داده شد و میزان رواناب در تخمین میزان نفوذپذیری خاک در این روش نقشی نداشته است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Estimation of Soil infiltration using different erosion components in different land uses

نویسندگان [English]

  • hamzeh saeediyan 1
  • Hamid reza Moradi 2
  • abdal salehpoor 3

1 Research Assistant Professor, Department of Soil Conservation and Watershed Management Research, Kerman Agricultural and Natural Resource Research Center, Agricultural Research, Education and Extension Organization, Kerman, Iran.

2 Associate professor, Department of watershed management engineering, college of natural resource, Tarbiat modares university, Noor, Iran, hrmoradi@modares.ac.ir; hrmoradi1340@yahoo.com ,mobile: 09123875311

3 3 Graduated Master science from Remote Sensing and GIS, University of Science and Research in Tehran and Expert in Agriculture, Mirza Koochak Khan, Ahvaz Sugarcane Development Company.

چکیده [English]

1-Introduction
Soil infiltration situation indicates soil behavior against water reaching the soil surface. This phenomenon determines the amount of both the water reaching the soil surface and rainfall losses. Soil infiltration of a basin has unique parameters based on its climate, soil conditions, and buildings. Soils are a set of discontinuous particles among which pores exist so that water can move from a point with more energy to a point with less energy; this property is called the passage of water through continuous pores. Gachsaran marl formation has a thickness of about 1600 m and consists of salt, anhydrite, colorful lime marl, and some shale from a lithology point of view. The age of this formation is lower Miocene (Ahmadi, 1999: 714). Estimation of soil infiltration using various erosion components can be a useful method to determine soil infiltration in the shortest time and at the lowest cost.
2-Methodology
In this study, soil infiltration was estimated using erosion different components in different land uses in deposits of Gachsaran formation by selecting a part of the Kuhe Gach watershed of Izeh city with an area of 1202 hectares. The relationship between soil infiltration and erosion different components, such as sediment rate, runoff rate, and runoff and erosion threshold, in different land uses of Gachsaran formation was determined by the multivariate regression. Then, different erosion components were sampled at six points with three replicates and different rainfall intensities of 0.75, 1, and 1.25 mm/min in three land uses of rangeland, residential area, and agricultural land using a rainfall simulator. SPSS and Excel software was used for statistical analysis. A portable Kamphorst rainfall simulator used in this study has a plot size of 625 cm2,

 
which determines the characteristics of soil, erosion, and water infiltration, and is suitable for soil research. It is used as a standard method to determine the soil infiltration of surface deposits in the field. The experimental plot area was selected 625 cm2 with a smooth gradient. The preparation of the testing area was followed by installing and setting the rainfall simulator and then starting a chronometer upon observing the precipitation on the screen. The amount of plot infiltration was determined at 10-min intervals (Kamphorst, 1987: 407).
3-Results and Discussion
The estimation of soil infiltration was acceptable and appropriate in some models in this study, which have a lower regression coefficient. Therefore, it is not possible to make appropriate comments about the estimation of the models only using regression coefficients and other statistical coefficients nor the significance levels of observational and estimated data as well as the minimum square mean of errors (MMSEs); in some cases, the MMSEs are not sufficient and require more studies (Jain and Kumar, 2006: 272). Despite scientific advances and improvement of measuring equipment, regression models are still used by researchers in different fields due to simplicity.
4-Conclusions
The results showed that the most positive and negative effects of different erosion components on estimating soil infiltration were related to sediment rate, runoff, and erosion threshold in all three mentioned land uses in three precipitation intensities (0.75, 1, and 1.25 mm min). Meanwhile, the role of sediment rate in estimating soil infiltration was slightly higher than runoff, and erosion threshold and runoff rate had no role in estimating soil infiltration in this method due to a high correlation of data.

کلیدواژه‌ها [English]

  • Keywords: Soil infiltration
  • Runoff
  • Sediment
  • Kuhe Gach watershed
Ahmadi, H. (1999). Applied Geomorphology, Vol. 1 (Water Erosion), Second Edition, Tehran University Press, 714 Pp.
 Aboutalebi, M., Azarakhshi, M., Nazari Samani, A., Mohammadi Golrang, B. )2018(. Deep sediment penetration and its effects on soil physical and chemical properties in Kashmar flood spreading, Hydrogeomorphology, No. 17: 125-144.
 Bormann H., and Klassen K. (2008). Seasonal and land use dependent variability of soil hydrological properties of tow northern German soils. Geoderma, 145: 295-302.
 Fakori T., Emami H., Ghahramani B., and Mohajerpor M. (2012). The estimation of soil steady and instantaneous infiltration rate using pedotranferfunction. The First National Conference on Farm Water Managment, Soil and Water Research Institute, Karaj, 104-107.
 Fathizadeh, H, Karimi, H., Tavakoli, M., (2016). The Role of Sensitivity to Erosion of Geological Formations in Erosion and Sediment Yield (Case Study: Sub-Basins of Doiraj river in ilam province), Journal of Watershed Management, Vol. 7, No. 13, Spring and Summer.
 Gerke, H. H., and van Genuchten, M. Th. (1993). A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resource. Res., 29 (2), 305-319.
Givi J, Prasherb S. O and Patel R. M, (2004). Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agri. Water Manag, 70: 83–96.
 Gregory J.H., Dukes M.D., Jones P.H., and Miller G.L. (2006). Effect of urban soil compaction on infiltration rate. Journal of Soil and Water Conservation, 61: 117-124.
 Homaee M,and Farrokhian Firouzi A, (2008). Deriving point and parametric pedotransfer functions of some gypsiferous soils. Australian Journal of Soil Research, 46 (3): 219-227.
 Jain, A., and A. Kumar., (2006). An evaluation of artificial neural network technique for the determination of infiltration model parameters, Applied Soft Computing, 6: 272-282.
 Jarvis, N J. (1998). Modeling the impact of preferential flow on non point source pollution. Physical nonequilibrium in soils: modeling and application, J. M. Selim and L. Ma, eds., Ann Arbor press, Chelsea, Mich., 195 – 221.
 kamphorst, A., (1987). A small rainfall simulator for the determination of soil erodibility, Netherlands Journal of Agricultural Science 35: 407-415.
 Kashi H., Emamgholizadeh S., Ghorbani H., and Hashemi S.A.H. (2013). Estimation of soil infiltration in agricultural and pasture lands using artificial neural networks and multiple regressions. Scientific -Research Quarterly On Environmental Erosion Researches, 9: 42-56.
 Kumar, C.P. (2006). Groundwater Flow and Contaminant Transport Models: An Overview. Journal of Applied Hydrology. Association of Hydrologists of India. 2: 94-110.
 Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J.P., Winiarski, T. and Delolme, C. (2010). Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma. 156.3-4: 316-325.
 Loch, R.J., (2000). Using rainfall simulation to guide planning and management of rehabilitatedareas: Part I. Experimental methods and results from a study at the northparkes mine, Australia. Land Degrad. Dev. 11: 221-240.
 Machiwa, D., Mandan, K., and Mal, B.C. (2006). Modeling infiltration and quantifying spatial soil variability in a watershed of kharagpur, India, Biosystems engineering, 95: 4. 569 – 582.
 Mandal, U.K., A.K. Bhardwaj, D. N. Warrington, D. Goldstein, A. Bartal and Levy. G. J. )2007(. Changes in soil hydraulic conductivity, runoff, and soil loss due to irrigation with different types of saline-sodic water. Geoderma, 144. 509-516.
 Meyer, L.D. (1994). Rainfall simulators for soil conservation research. In: Lal, R., (ed.), Soil Erosion Research Methods. Soil and Water Conserv. Soc., Ankeny, Iowa. 83-103.
 Mohammadi, M. and Refahi M., (2006). Estimation of infiltration equations parameters by soil physical properties. Iranian Journal of Agricultural Sciences, (6) 36:1391-2019.
 Morady, H. R., and Saidian, H., (2010). Comparing the Most Important Factors in the Erosion and Sediment Production in Different Land Uses, Journal of Environmental Science and Engineering, 4: No. 11: 1-11.
 Nahvinia M.J., Liaghat A., Parsinejad.M. (2010). Prediction of Depth of Infiltration in Furrow Irrigation Using Tentative and Statistical Models. Water and Soil, 24 (4): 769-780.
 Neris J., Jimenz C., Fuentes J., Morillas G., and Tejedor M. (2012). Vegetation and land use effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain). Catena, 98: 55-62.
 Punmia, B.C. (1992). Soil mechanic and foundation. Laxmi Publication, New Delhi.
 Rawls W.J and Pachepsky Y.A, (2002). Soil consistence and structure as predictors ofwater retention. Soil ScienceSociety. 66: 1115-1126.
 Seeger, M. and J.B. Ries. (2002). Runoff generation on abandoned fields in the Central EbroBasin-results from modelling. In: Garcia-Ruiz, J.M., J.A.A. Jones and J. Arnaez. (Eds.), Environmental Change and Water Sustainability. CSIC. Zaragoza, pp. 83-97.
 Sihag, P., Tiwari, N. K., and Ranjan, S. (2017). Estimation and intercomparison of infiltration models. Water Science. 31 (1), 34-43.
Turner, E.R. (2006). Comparison of infiltration equations and their field validation with rainfall simulation (Doctoral dissertation).
Yimer F., Messing I., Ledin S., and Abdelkadir A. (2008). Effects of different land use types on infiltration capacity in a catchment in the highlands Ethiopia. Soil Use and Management, 24: 344-349.