نوع مقاله : پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد علوم و مهندسی آبخیزداری دانشکده منابع طبیعی دانشگاه تهران

2 دانشیار دانشکده کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 استادیار آبخیزداری، دانشکده منابع طبیعی دانشگاه یاسوج

4 استاد پردیس کشاورزی و منابع طبیعی دانشگاه تهران،

چکیده

وجود چشمه‌های آب ساحلی به دلیل تاثیر بر روی شوری و دمای آب و به تبع آن تاثیر بر روی چگالی محیط اطراف در مطالعات دریایی از اهمیت بالایی برخوردار است. هدف از پژوهش حاضر، مدلسازی عوامل موثر بر ناهنجاری دمای آب‌های ساحلی و تعیین نواحی احتمالی خروج سفره‌های آب زیرزمینی به داخل دریا می‌باشد. در این تحقیق به منظور تعیین ناهنجاری دمایی ناشی از نواحی احتمالی تخلیه‌ی آب زیرزمینی به خلیج فارس در سواحل استان هرمزگان، ابتدا با اعمال تصحیحات لازم (اتمسفریک، رادیومتریک، هندسی) بر داده‌های حرارتی باند 10 لندست 8، نقشه‌ی دمای سطح دریا (SST) تهیه و نقشه‌ی ناهنجاری دمایی استاندارد (STA) استخراج شد. سپس با تعیین سطح مشترک ناهنجاری دمایی طی سال‌های 96 و 97، نواحی احتمالی تخلیه آب زیرزمینی زیردریایی به خلیج فارس مشخص شد. سپس شاخص‌های ژئومرفومتری شامل: ارتفاع، شیب، انحنای طولی، انحنای عرضی، انحنای عمومی و موقعیت توپوگرافی (TPI) تعیین شده و ارزیابی شد. نتایج نشان داد که ناهنجاری‌های ایجاد شده در سواحل بندرمقام، بندرنخیلو، بندردیوان، بندرشناس، بندرلنگه و بندرکنگ به ترتیب 53/43، 7/83، 18/65، 5/16، 2/46، 12/98 هکتار دارای احتمال بسیار بالای خروج سفره‌های آب زیرزمینی به داخل دریا می‌باشند. این سطح در کل سواحل محدوده مورد مطالعه 100/53هکتار است که به خلیج‌ فارس تخلیه می‌شود. همچنین بر اساس نتایج آزمون جکنایف حساس‌ترین شاخص ژئومرفومتری، متغیر ارتفاع (درحالت منفی برابر با عمق دریا) ‎است که به تنهایی AUC برابر با 90% ایجاد می‌کند لذا اگر از داده‌های ورودی‌ مدل حذف شود، بیشترین تاثیر کاهشی را در نتایج پیش بینی مدل خواهد داشت.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling of factors affecting the anomalies of the coastal water temperature of the Persian Gulf in Hormozgan Province and its relevance with geomorphometric indices

نویسندگان [English]

  • anis heydari 1
  • AliAkbar Nazari Samani 2
  • Mohsen Farzin 3
  • sadat feiznia 4

1 MSc,. Graduated in watershed Management,, Faculty of Natural resources, University of Tehran

2 Associate Professor, Department of natural resources, University of Tehran, Karaj

3 Faculty of Natural Resources, University of Yasouj

4 Professor, college of natural resource, Tehran university, Iran

چکیده [English]

1-Introduction
Submarine Groundwater Discharge (SGD), any flow or all water flows on the continental banks of the sea bed, is defined regardless of the liquid composition and the driving force of its agent (Barnett et al., 2003). This occurs in a calm and continuous flow of SGD wherever its table has a positive relative hydraulic gradient with the sea level, which is attached to the surface runoff. The outflow of the flow into the sea will cause a temperature anomaly on the surface. The depletion of the underground submarine currents plays a remarkable role in the water cycle, which can be considered as an important part of water balance. Therefore, it is important to identify the range of anomalies caused by the probable depletion of SGD into the sea.
2-Methodology
Remote sensing systems are used to determine the site of SGD depletion into the sea or lake, including aerial images with high resolution (Lewandowski et al., 2013). The aerial manual infrared imaging (Duarte et al., 2006) or ground thermal imaging (Schuetz and Weiler, 2011) are highly expensive and are certainly not suitable to assess the regional scale or continuous monitoring of SGD depletion in large blue bodies (Wilson and Rocha, 2016). Hence, free data and images of the Landset 8 satellite for 2017 and 2018 were used to determine sea surface temperature maps. For this purpose, corrections were first applied to thermal bands in the ENVI 5.3 software environment. Then, to investigate the existence of geometrical and non-geometrical errors, the quality of the data was examined on satellite images. Analyses and extraction of sea surface temperature maps were carried out using GIS 10.3.1 software. After preparing a suitable temperature map, the least surface roughness level was determined by applying different classifications in the GIS environment. Then, the distribution of each anomaly was finally prepared to prepare the distribution map of thermal anomalies. In this study, a digital elevation model (DEM) was used in GIS software to provide geomorphometryindices and maps related to environmental variables (slope, Topographic Position Index,

 

profile curvature, general curvature, plan curvature, and height) and statistical modeling. Finally, the layers were prepared and the required adjustments were made in the software settings. Maxent Version 3.3.3 software was then used to perform statistical modeling.
3-Results and discussion
Some anomalies were observed by examining the rainfall of existing pluviometry stations (n = 14) in the study area and investigating the rainfall amount (the same month, the month before, six months before, the same year, and the preceding year). The regression relationship between levels of anomalies and rainfall values determined at different times revealed a strong relationship between the anomaly levels and the amount of rainfall in the previous month. Finally, the seasons studied in 2017 and 2018, the results obtained from the study of SST, STA, and the least common level defined, along with rainfall investigations, all indicated that that the highest temperature anomalies with iterations in two different histories belonged to January 2017 and 2018, which were used for subsequent analyses. The depth studies in the range of anomalies included in January 2017 and 2018, as well as the common level of anomalies from the two dates, show that anomalies obtained in the deep-sea regions are not located and the depth of these anomalies is low within the range, which increases the probable presence of the underground spring. It can be stated that the results obtained are related to the depth of temperature anomalies because they are in the shallow depth of the sea and less than 30 meters, which is the reason to increase the likelihood of the presence of the submarine springs in these areas. According to McBride and Pfannkuch et al. (1975), Shaban et al. (2005), Thomas et al. (2002), Lewandowski et al. (2013), Wilson and Rocha (2016), and Farzin et al. (2017), SGD presence rate decreases with the distance from the shore, and the presence of submarine springs would be expected at a water level close to the shore in the disorders created at the surface of the sea, which corresponds to our results. All temperature anomalies, particularly the repeated anomalies in January 2017 and 2018 are located 3 km away from the coast, which increases the probable presence of SGD. According to the results of the jackknife test, the most important indices are in the presence of temperature anomalies and the presence of SGD (depth) and slope, which indicates that the presence of SGD spring is up to a depth of 4 meters and the appropriate slope for the presence of SGD depletion region is 5%.

 
 
Figure (1): The classification map of the presence of SGD based on temperature level anomalies and environmental variables
 
Figure (2): The Jackknife test for model sensitivity analysis
4-Conclusion
The environmental factors play a role in the creation of temporal and spatial changes of SST and STA. Based on the results obtained from geomorphometrystudies and inequalities, as well as those of maxent modeling based on the common level of temperature anomalies in January 2017 and 2018, it can be concluded that anomalies occurred in the Bandar Magham, Bandar Nakhiloo, and coasts of  Bandar Divan, Bandar Shenas, Bandar lengeh, and Bandar kong indicate that these areas have a very high probability of underground aquifers. These submarine currents seem to have a substantial amount of evacuation that could have significant effects on the coastal ecosystem and the regional water balance. If the quality of the evacuated water is not intrinsically salty and is desirable to be used, it can be utilized as a water supply source in the area.

کلیدواژه‌ها [English]

  • Temperature anomaly
  • Submarine Groundwater Discharge
  • geomorphometry
  • Maxent
  • Persian Gulf
Artis, D.A., & Carnahan, W.H. )1982(. Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12 (4): 313–329.
Bahrami, M., Fathzadeh, A., Taghizadeh, R., & Zare Chahooki, M. (2016).  Investigation of the scale of geomorphometric parameters on the prediction of spatial distribution of snow depth, Journal of Hydrogeomorphology, No. 6, Spring 2016, pp. 95-113. (In Persian)
Burnett, W.C., Bokuniewicz, H., Huettel, M., Moore, W.S., & Tanighchi, M. (2003). Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66: 3–33.
Barsi, J.A., Schott, J.R., Hook, S.J., Raqueno, N.G., Markham, B.L., & Radocinski, R.G. (2014). Landsat- 8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sensing, 6: 11607-11626.
Bao, B., & Ren, G. (2014). Climatological characteristics and long-term change of SST over the marginal seas of China. Continental Shelf Research, 77: 96–106.
Campbell, C.W., Abd El Litif, M., & Foster, J.W. (1996). Application of Thermography to Karst Hydrology. Cave and Karst Studies, 58(3): 163-167.
Deldar, H. (2013). Location of Persian Gulf freshwater springs using satellite images. Master Thesis, Faculty of Marine Sciences, Tarbiat Modares University, 2 p. (In Persian)
Entezari, A., Amirahmadi, A., Aliabadi, K., Khosroyan, M., & Ebrahimi, M. (2016). Surface temperature monitoring and evaluation of land use change trends (Case study: Parishan Lake watershed), Journal of Hydrogeomorphology, No. 8, pp. 113-139. (In Persian)
Farzin, M., Samani, A.N., Manbari, S., Feyznia, S., & Kazemi, G. (2017). Identification of the possible range of presence of Persian Gulf submarine springs on the coasts of Bushehr province using Landsat 8 thermal data, Journal of Remote Sensing and Geographic Information System in Natural Resources, Year 8, No. 4. (In Persian)
Farzin, M., Samani, A.N., Feyznia, S., & Kazemi, G. (2016). Determining the possible areas of groundwater discharge to the shores of the Persian Gulf in Bushehr province using a standard temperature anomaly map, Journal of Echo Hydrology, the period 4, No. 2, 488-477. (In Persian)
Farzin, M., Samani, A.N., Feiznia, S., Kazemi, G.A., & Golzar, I. (2017). Comparison of SGD rate between northern-southern coastlines of the Persian Gulf using RS. European Water, 57: 497-503.
 
Huang, D.J., Ni, X.B., Tang, Q.S., Zhu, X.H., & Xu, D.F. (2012). Spatial and temporal variability of sea surface temperature in the Yellow Sea and East China Sea over the past 141 years. Modern Climatology. Book, 7: 213–234.
Ionescu, D., Siebert, C., Polerecky, L., Munwes, Y.Y., Lott, C., Hausler, S., Bizic-Ionescu, M., Quast, C., Peplies, J., & Glockner, F.O. (2012). Microbial and chemical characterization of underwater fresh water springs in the Dead Sea. PLoS One, 7, doi: 10.1371/journal.pone.0038319.
 
Kolokoussis, P., Karathanassi, V., Rokos, D., Argialas, D., Karageorgis, A.P., & Georgopoulos, D. (2011). Integrating thermal and hyper spectral remote sensing for the detection of coastal springs and submarine groundwater discharges. International Journal of Remote Sensing, 32(23): 8231-8251.
Kitzberger, T., Brown, P.M., Heyerdahl, E.K., Swetnam, T.W., & Veblen, T.T. (2007). Contingent Pacific–Atlantic Ocean influence on multicentury wildfire synchrony over western North America. Procceding of National Academy of Sciences of USA, 104 (2): 543–548.
Lewandowski, J., Meinikmann, K., Ruhtz, T., Pöschke, F., & Kirillin, G. )2013(. Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation. RemoteSensing of Environment, 138: 119–125.
Lecher, A.L., Fisher, A.T., & Paytan, A. (2016). Submarine groundwater discharge in Northern
Monterey Bay, California: Evaluation by mixing and mass balance models. Marine Chemistry, 179: 44– 55.
Mallast, U., Schwonke, F., Gloaguen, R., Geyer, S., Sauter, M., & Siebert, C. (2013). Airborne thermal data identifies groundwater discharge at the north-western coast of the Dead Sea. Remote Sensing, 5(12), 6361-6381.
Moore, W.S. (2010). The Effect of Submarine Groundwater Discharge on the Ocean. Annual Review of MarineScience, 2(1): 59-88.
 
Mejías, M., Ballesteros, B. J., Anton-Pacheco, C., Domínguez, J. A., Garcia-Orellana, J., GarciaSolsona, E., & Masque, P. (2012). Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. Journal of Hydrology, 464–465: 27–40.
Nazem Alsadat, S., & Ghasemi, A. (2005). Effect of Caspian Sea water temperature fluctuations on winter and spring rainfall in the northern and southwestern regions of Iran, Agricultural Science and Technology and Natural Resources, 8 (4): 1-14. (In Persian)
Negga, H. E. (2007). Predictive Modelling of Amphibian Distribution Using Ecological Survey Data: a case study of Central Portugal, Master thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, TheNetherlands.
Ozdemir, A. (2011). Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology, 405: 123–136.
Poorasghar, F., Ghaemi, H., Jahanbakhsh, S., & Sari, B. (2011). The effect of water temperature in the Persian Gulf and the Sea of Oman on autumn and winter rainfall in the southern half of Iran, Proceedings of the First International Persian Gulf Oceanography Conference and the 9th Iranian Marine Science and Technology Conference, Tehran, p 50. (In Persian)
Phillips, S. J., Anderson. R. P., & Schapire, R. E. (2006). Maximum entropy modeling of speciesgeographic distributions. Ecological Modelling, 190, 231–259.
Patskoski, J., Sankarasubramanian, A., & Wang, H. (2015). Reconstructed streamflow using SST and tree-ring chronologies over the southeastern United States. Journal of Hydrology 527: 761–775.
Phillips, S. J., Anderson. R. P., & Schapire, R. E. (2006). Maximum entropy modeling of speciesgeographic distributions.Ecological Modelling, 190, 231–259.
 
 
Rezaei, M., Jahanbakhsh, S., Bayati, M., & Zeynali, A. (2010). Forecast of autumn and winter precipitation in the western half of Iran, using the Mediterranean SST in summer and autumn. Natural Geography Research, 74: 47-62. (In Persian)
 
Rangzan, K., & Abshirini, E. (2005). The use of remote sensing and GIS in the study of the relationship between structural, lithological and topographic factors in the bronze-bearing springs of Pabdeh Dasht-e Lali, 23rd Earth Sciences Conference, February 11, 442 p. (In Persian)
 
ROPME (the Regional Organization for the Protection of the Marine Environment). (2000). Regional Report of the State of the Marin Environment, Kuwait, 202 pp.
Reynolds, R.M. (1993). Physical Oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman-Results from the Mt Mitchell Expedition. Marine Pollution Bulletin, 27: 35-59.
Sreedevi, P.D., Owais, S., Khan, H.H., & Ahmed, S. (2009). Morphometric Analysis of a Watershed of South India Using SRTM Data and GIS. Journal of the Geological Society of India, 73 (4): 543-552.
Schubert M, Knöller K, Stollberg R, Mallast U, Ruzsa G., & Melikadze G. (2017). Evidence for Submarine Groundwater Discharge into the Black Sea—Investigation of Two Dissimilar Geographical Settings.Water, 9(7):468.
Samani, A.N., Farzin, M., Rahmati, O., Feiznia, S., Kazemi, G.A., Foody, G., & Melesse, A.M. (2021) Scrutinizing Relationships between Submarine Groundwater Discharge and Upstream Areas Using Thermal Remote Sensing: A Case Study in the Northern Persian Gulf. Remote Sens, 13, 358. https://doi.org/ 10.3390/rs13030358.
USGS. Pages dedicated to Landsat missions. Calibration Notices of January 29, (2014). Landsat 8 Reprocessing to Begin February 3, 2014. Available online: http://landsat.usgs.gov/calibration_notices.php (accessed on 31 October 2016).
Wilson, J., & Rocha, C. (2012). Regional scale assessment of submarine groundwater discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques, Remote Sensing of Environment, 119: 21-34.
 
Wilson, J., & Rocha, c. (2016). A combined remote sensing and multi-tracer approach for localizing and assessing groundwater-lake interactions. International Journal of Applied Earth Observation andGeoinformation, 44: 195– 204.
Xing, Q.G., Braga, F., Tosi, L., Lou, M.J., Zaggia, L., Teatini, P., Gao, X.L., Yu, L.J., Wen, X.H., & Shi, P. (2016). Detection of low salinity groundwater seeping into the Eastern Laizhou Bay (China) with the aid of Landsat Thermal Data. In: Harff, J. and Zhang, H. (eds.), Environmental Processes and the Natural and Anthropogenic Forcing in the Bohai Sea, Eastern Asia. Journal of Coastal Research (Special Issue), 74: 149-156.Yu, X., Guo, X., & Wu, Z. (2014). Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sensing, 6: 9829-9852.