نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری عمران

2 استادیار گروه مهندسی عمران، دانشگاه آزاد کرمان

3 استادیار گروه مهندسی عمران دانشگاه ازاد اسلامی کرمان

چکیده

با توجه به نیاز روزافزون جوامع بشری به منابع آب زیرزمینی، به‌ویژه در مناطق خشک و نیمه‌خشک مانند ایران، حفاظت و جلوگیری از آلودگی این منابع امری ضروری تلقی می‌گردد. بدین منظور، ارزیابی آسیب‌پذیری آب‌های زیرزمینی می‌تواند نقشی حیاتی در حفاظت و بهره‌برداری از این منابع ایفا نماید. دشت حاجی‌آباد با وسعت حدود 158 کیلومتر مربع در فاصله 160 کیلومتری شمال بندرعباس واقع شده است. نظر به اهمیت این دشت از جهت تأمین آب کشاورزی و شرب منطقه و با توجه به روند افت سطح آب زیرزمینی منطقه، برداشت از منابع آب در سال‌های اخیر ممنوع شده است. در از این پژوهش، ارزیابی آسیب‌پذیری آبخوان دشت حاجی‌آباد توسط مدل‌های DRASTIC و SINTACS انجام گرفت. در نهایت نقشه‌های نهایی آسیب‌پذیری با مقادیر EC واسنجی شد. به منظور بررسی خصوصیات هیدروژئوشیمیایی منابع آب زیرزمینی دشت، از نقاط تعیین شده 26 نمونه آب در دوره‌های مختلف سال آبی 1398 برداشت گردید که آنالیز نمونه‌ها آب در آزمایشگاه آب و خاک هرمزگان انجام گردید. همچنین، از نتایج داده‌های نمونه‌های آب آنالیز شده توسط سازمان آب منطقه‌ای هرمزگان نیز استفاده شده است. اندیس آسیب‌پذیری مدل دراستیک برای منطقه موردمطالعه، مقداری بین (94-128( و برای SINTACS (115-156( به‌دست‌آمده است. طبق برآورد نقشه‌های آسیب‌پذیری تهیه‌شده برای هر دو مدل، بیشترین پتانسیل آسیب‌پذیری مربوط به قسمتی از بخش مرکزی و شرقی منطقه مورد مطالعه می‌باشد. مقدار شاخص همبستگی بین EC و مدل‌های آسیب‌پذیری DRASTIC و SINTACS به ترتیب 39 و 35 برآورد شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Vulnerability of Hajiabad plain aquifer based on DRASTIC and SINTACS models

نویسندگان [English]

  • mehrdad hassanzadeh 1
  • mehdi momeni reghabadi 2
  • amir robati 3

1 phd student

2 Assistant Professor Civil Engineering Group

3 Assistant Professor, Department of Civil Engineering, Islamic Azad University of Kerman

چکیده [English]

 

1-Introduction
Groundwater pollution is one of the most serious and important issues in urban and agricultural areas due to land use.  For this purpose, in order to obtain methods and garbage water from the pollutants that removes them, the use of methods for garbage water vulnerability assessment such as AVI, GODS, DRSTIC, SINTACS, etc. were developed.  Intrinsic vulnerability is assessed according to the hydrological and hydrogeological characteristics of the region, such as the characteristics of the aquifer and the stresses imposed on it. Occurs with inherent vulnerability components.  The most common methods of assessing vulnerability index include DRASTIC, GOD, SINTACS, SI and AVI rating methods. In this study, the vulnerability of the aquifer has been investigated using DRASTIC and SINTACS models, and in order to validate the results of the methods used, electrical conductivity concentration data were used.
 2-Methodology
Hajiabad plain is located 160 km north of Bandar Abbas and between 35, 55 to 00 and 56 longitudes and latitudes 17, 28 to 21 and 28 north, from the north to the heights of Bibi Dokhtaran mountain from the west to Sirjan-Bandar Abbas road from  To the east to the heights of Anfuzeh mountain and from the south to the congomara hills and the average width is 4 km.  The climate of the region is warm and the average temperature of the region is 19.8 degrees Celsius and the average annual evaporation of the plain is 2464.7 mm.  In order to study the hydrochemical properties of groundwater in the region, 16 samples of water analyzed from groundwater study wells by the Regional Water Organization of West Azerbaijan Province for the water year 93 were used.
3- Results and Discussion
Vulnerability maps of Drastik and SINTACS models were prepared by applying weights related to each parameter and combining layers using the overlap function.  According to the SINTACS map, the vulnerability of the plain is estimated from 115 to




156, the plain is in the range of medium, medium to high and high vulnerability. According to the vulnerability classification with SINTACS model, it shows that parts of the center of the plain (near Aliabad and Hajiabad villages) are in the upper floor and the northern slope of the Hajiabad plain basin has the middle floor.  Most of the plain area was in the range of moderate to high vulnerability. The results showed that the Syntax model has more flexibility than the Drastic model and the probability of vulnerability is slightly higher than the Drastic model.  The final map of Drastik model estimated the vulnerability of the plain from 94 to 128. The highest vulnerability is in parts of the center of the plain (near Aliabad and Hajiabad villages) and the lowest in the northern slope of Hajiabad plain basin and according to the range of Drastic vulnerability index provided by Aller  Et al, (1987), vulnerability of the region is divided into 3 categories between low to medium risk. In order to study more closely and also to compare the classical methods used in this study, the method of calculating the correlation index (CI) in the aquifer and electrical conductivity data were used.  For this purpose, electrical conductivity values ​​were divided into three categories of low, medium and high electrical conductivity.  Adaptation of wells with three levels of EC pollution and vulnerability categories predicted by DRASTIC and SINTACS methods was brought for Hajiabad aquifer. Based on the value of the correlation coefficient between the map produced using the drastic model with the electrical conductivity map, 39 and the same value was obtained for the Syntax model 35, which are slightly different from each other.
4-Conclusions
In this study, both drastic and syntactic methods predicted the potential risk in Hajiabad aquifer with almost equal accuracy.  Having the correlation index between the electrical conduction point data and the vulnerability map, it showed that the Drastic model provided better vulnerability than the SINTACS model. Contamination potential in both studied models is low in the northern and southern regions. This can be due to high groundwater depth and low hydraulic conductivity. Comparing the models with the coefficient of determination between the electrical conductivity concentration and the vulnerability parameters showed that the highest correlation was in the slope layer, depth to the water table and the material of the unsaturated medium.
Keywords:Aquifer vulnerability, SINTACS Method, Groundwater, Hormozgan



5-References
Aller, L., T. Bennet, J.H. Lehr, R.J. Petty, and G. Hackett. (1987). DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological settings. EPA/600/2–87/035. US Environmental Protection Agency, Ada, OK, USA.
 
 


 

کلیدواژه‌ها [English]

  • Aquifer vulnerability
  • SINTACS Method
  • Groundwater
  • Hormozgan
 
Akhavan S, Mousavi SF, Abedi-Koupia J and Abbaspour K. (2011). Conditioning DRASTIC model to simulate nitrate pollution case study: Hamadan-Bahar plain. Environmental Earth Science 63: 1155-1167.
Al-Adamat, R., Foster, I. and Baban, S. (2003). Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Applied Geography, 23, 303-324.
Aller, L., T. Bennet, J.H. Lehr, R.J. Petty, and G. Hackett. (1987). DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological settings. EPA/600/2–87/035. US Environmental Protection Agency, Ada, OK, USA.
Anane, M., Abidi, B., Lachaal, F., Limam, A., Jellali, S. (2015). GIS-based DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI): comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, Tunisia. Journal of Hydrogeology, 21(3): 715-731.
Asghari moghadam A, Nadiri A, Paknia V. (2015). Vulnerability Assessment of Bostan Abad Plain Qquifer by DRASTIC and SINTACS Models. Journal of Hydrogeomorphology, 3(8), 21-52
Bouwer, H. (1978). Grondwater Hydrology. McGraw-Hillpub. U .S. A.
Cameron E and Peloso GF. (2001). An application of fuzzy logic to the assessment of aquifer's pollution potential. Environmental Geology 40: 1305-1315.
Chitsazan M and Akhtari Y. (2009). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran plain, Khuzestan, Iran. Water Resource Management 23: 1137-1155.
Civita M. (1994). Le carte Della vulnerabilita` degli acquiferi all’inquinamento. Teoria & practica (Aquifer vulnerability maps to pollution) (in Italian), Pitagora Ed, Bologna, 325.
El-Naqa, A., Hammouri, N. & Kioso, M. (2006). GIS Based Elevation of Groundwater Vulnerability in the Russefia Area Jordan, Revista Mexicana de Ciencias Geologicas, 23(3): 277-287.
Foster, S. S. D. (1987). Fundeamntal concept in aquifer vnlnterability, pollution risk and protection strategy. Vulnerablitily of soil and groundwater topollutants, 38: 69-86
Jang W, Engel B, Harbor J, Theller, L. (2020). Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning. Environmental Modelling & Software. 124(4): 678-688.
Kozłowski M, Sojka M. (2019). Applying a Modified DRASTIC Model to Assess Groundwater Vulnerability to Pollution: A Case Study in Central Poland. Pol. J. Environ. Stud. 28(3): 1223-1231.
Maqsoom A, Aslan B, Khalil U, Ghorbanzadeh O, Ashraf H, Tufail R, Farooq D, Blaschke  T. (2020). A GIS-based DRASTIC Model and an Adjusted DRASTIC Model (DRASTICA) for Groundwater Susceptibility Assessment along the China–Pakistan Economic Corridor (CPEC) Route. SPRS Int. J. Geo-Inf, 9(5): 332-344.
Margat, J. (1968). Vulnérabilité des nappes d’eau souterraine à la pollution. BRGM Publication, 68.
Mosazadeh R. (2017). Hydrochemical evaluation and vulnerability of Chai Dasht aquifer in Urmia plain. Master Thesis in Hydrogeology, Urmia University.
Nadiri A, Sedghi Z. (2018). Vulnerability assessment of multiple aquifers using DRASTIC and SINTACS practical frameworks. Journal of Hydrogeology, 4 (2), 171-188.
Nadiri A.A, Asghari Moghaddam A, Tsai F, & Dixon B.(2013). Optimization of DRASTIC Method by Supervised Committee Machine Artificial Intelligence to Assess Groundwater Vulnerability for Maragheh-Bonab Plain Aquifer, Iran. Journal of hydrology. 530: 89-100.
Nadiri, A.A., Gharekhani, M., Khatibi, R. (2018a). Mapping aquifer vulnerability indices using artificial intelligence-running multiple frameworks (AIMF) with supervised and unsupervised learning. Water Resour. Manage, 32(9): 3023-3040.
Nadiri, A.A., Sedghi, Z., Khatibi, R., Sadeghfam, S. (2018b). Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks. Journal Environ Manage, 227:415-428
Panagopoulos, G., A. Antonakos, and N. Lambrakis. (2005). Optimization of DRASTIC model for groundwater vulnerability assessment, by the use of simple statistical methods and GIS. Hydrogeology Journal (published online).
Panagopoulos, G., A. Antonakos, and N. Lambrakis. (2005). Optimization of DRASTIC model for groundwater vulnerability assessment, by the use of simple statistical methods and GIS. Hydrogeology Journal (published online).
Pathak DR, Hiratsuka A, Awata I and Chen L. (2008). GIS base Fuzzy optimization method to groundwater vulnerability evaluation. Pp 2716-2719. Proceeding of The 2nd international Conference on Bioinformatics and Biomedical Engineering .16-18 May, Shanghai, China.
Qian, H., P. Li, KWF. Howard, C. Yang, and X. Zhang. (2012). Assessment of groundwater vulnerability in the Yinchuan Plain, northwest China using OREADIC. Environ Monitoring Assess 184(6):3613–3628.
Rahman, A. (2008). A GIS based model for assessing groundwater vulnerability in shallow aquifer in Algarh, India. Applied Geography 28 (1): 32-53
Rahman, A. (2008). A GIS based model for assessing groundwater vulnerability in shallow aquifer in Algarh, India. Applied Geography 28 (1): 32-53
Rajput H, Goyal R, Brighu U. (2020). Modification and optimization of DRASTIC model for groundwater vulnerability and contamination risk assessment for Bhiwadi region of Rajasthan, India. Environmental Earth Sciences, 42: 79-86
Ramezani sarbandi M, Ghazavi R, Dokhani S, Mortazavi M. (2016). The Investigation of the Groundwater Vulnerability to Pollution Using DRASTIC and GODS Models (A Case Study: Rafsanjan Plain). Journal of Hydrogeomorphology, 4(10), 65-80
Rezaei, F., Safavi, H.R., Ahmadi, A. (2013). Groundwater vulnerability assessment using fuzzy logic: a case study in the Zayandehrood aquifers, Iran. Environmental management, 51(1):267-277.
Saidi Salwa, Bouri Salem and Ben Dhia Hamed. (2011). Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahia-Ksour Essaf aquaifer, Tunisia: a validation study. Hydrological Sciences Journal. 56(2): 288-304
Scanlon, B.R., Healy, R.W., Cook, P.G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1):18-39.
Sharadqah, S. (2017). Contamination Risk Evaluation of Groundwater in the Canton of Portoviejo-Ecuador, using Susceptibility Index and two Intrinsic Vulnerability Models. American Journal of Environmental Sciences, 13(1):65-76.
Soyaslan I. (2020) Assessment of groundwater vulnerability using modified DRASTIC-Analytical Hierarchy Process model in Bucak Basin, Turkey. Arabian Journal of Geoscience.