نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکدهای منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران

2 عضوء هیئت علمی گروه مرتع و آبخیزداری دانشکده منابع طبیعی و علوم زمین دانشگاه کاشان

3 دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان

چکیده

رواناب یکی از مهم­ترین اجزای چرخه هیدرولوژی است. در هر حوضه ­ی آبریز برآورد رواناب برای برنامه ­ریزی دقیق مدیریت منابع آب ضروری است. هدف از انجام این مطالعه بررسی کارایی مدل هیدرولوژیکی و نیمه ­توزیعی SWAT جهت برآورد دبی روزانه ­ی حوضه ­های فاقد آمار در مناطق خشک از طریق انتقال پارامتر­های واسنجی شده از حوضه ­ی دارای آمار به حوضه ­ی فاقد آمار با رویکرد منطقه ­بندی مبتنی بر خصوصیات فیزیکی است. جهت انجام این مطالعه، ابتدا مدل SWAT در حوضه ­ی آبریز دارای آمار (خـنچه) واسنجی و صحت­ سنـجی شد. سپس پارامـتر­های واسنجی شـده برای شـبیه ­سازی و تحلیل جریان در بسته نرم‌ افزاری Hydro office-FDC بـه حوضه ­ی فاقد آمار سـوک چم انتتقال داده شد. بـر اساس نتایج حاصل از تحلیل حساسیت، از بین پارامترهای حساس در شبیه­ سازی جریان، پارامتر­های HRU-SLP, SLSOIL, SOL-AWC, CANMX, CH-S1 به ‌عنوان حساس­ترین پارامتر­ها در منطقه­ی مورد مطالعه شناخته شدند. معیار­های ارزیابی عملکرد مدل PBIAS, R2, NSE به ترتیب برای دوره واسنجی 6/0، 65/0 و 7/10 و برای دوره­ی صحت­سنجی برابر 47/0، 63/0 و 88/11- به دست آمد که نشان­دهنده­ی دقت قابل‌قبول شبیه­سازی دبی روزانه در حوضه ­ی خشک در مقیاس روزانه است. همچنین نتایج حاصل از اندازه‌گیری شاخص­های منحنی تداوم سیلابی (Q5)، مرطوب(Q20-Q10)، متوسط (Q60-Q50-Q40-Q30)، کم‌آبی (Q95-Q90-Q80-Q70) نشان داد که در 5 درصد از ایام سال (18روز) دبی سیلابی معادل 28/0 مترمکعب برثانیه یا بیشتر از آن است. محدوده­ ی شاخص ­های مرطوب، متوسط و کم آبی به ترتیب (12/0–16/0)، (11/0- 08/0) و (024/0– 058/0) مترمکعب برثانیه به دست آمد. استخراج این نتایج می­تواند به درک و شناخت بهتر از رفتار هیدرولوژیکی حوضه ­های فاقد آمار کمک کند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the efficiency of SWAT model in estimating daily discharges of no gauge basins with zoning approach in arid regions

نویسندگان [English]

  • daniyal sayyad 1
  • Ebrahim Omidvar 3

1 Ph.D, Student, Kashan University, Kashan

3 Faculty of Natural resources, University of Kashan

چکیده [English]

1-Introduction
Runoff is one of the most important components of the hydrologic cycle. Since there are no observational data in basins lacking statistics, the process of calibration and validation of hydrologic models seems impossible in these basins. On the other hand, predicting runoffs in basins lacking statistics is essential for planning and management of the basin (runoff estimation, ecosystem services, flood control) (Beck et al., 2016). However, predicting the runoff in basins lacking statistics has been comprehensively discussed using the calibrated hydrologic model in basins having observational statistics through the zoning approach (Yang et al., 2019:67). The zoning approach has been identified as the cheapest and most prevalent solution for solving the prediction problem of flows in basins lacking statistics (Cislaghi et al., 2020:348). According to the definition of the zoning approach, predicting runoff in basins lacking statistics is done using data transfer from basins having statistics to the basins lacking statistics (Rojas et al., 2016).
2- Methodology
To conduct this study, firstly SWAT model was calibrated and validated in the watershed basin having statistics; then, the calibrated parameters were transferred to Sukcham basin which lacked statistics, to simulate and analyze the flow using hydro office-FDC software. To analyze the sensitivity of parameters in the zoning approach and for simplifying the complex structure of hydrologic models like SWAT, minimizing the number of parameters in the modeling phases was a necessity. To this end, firstly, a sensitivity analysis was done for the basin having statistics using 14 sensitivity parameters affecting the flow. According to the global sensitivity analysis, the parameters were ranked in SWAT CUP-SUFI-2 based on the sensitivity level and considering two P-value and T-stat factors. Later, 14 parameters having high sensitivity in the basin having statistics were calibrated and transferred to the basin lacking statistics (Sukcham) using zoning and physical approaches.
 




3-Results and Discussion
According to the obtained results from sensitivity analysis of 14 sensitive parameters in the flow simulation, SLSOIL, HRU-SLP, CH-S1, CANMX, SOL-AWC parameters were recognized as the most sensitive parameters of the region. The performance evaluation criteria of NSE, R2, and PBIAS models, respectively, for the calibration periods, were 0.6, 0.65, and 10.7 and for the validation, periods were 0.47, 0.63, and 11.88, showing the acceptable accuracy of daily discharge simulation in the daily scale. After calibration and validation of SWAT model in the basin having statistics and the basin lacking statistics (Sukcham), the daily time step was applied for the 2008-2015 period, and the calibrated parameters of the basin having statistics were transferred to the basin lacking statistics through zoning approach and using physical characteristics. Considering Table (9), the average daily outlet runoff, as well as the average volume of annual outlet runoff for the basin lacking statistics (Sukcham), were estimated. The estimation of such information from basins lacking statistics can present managerial views toward controlling the flood and preventing the occurrence of devastative floods as well as providing the required water sources for filling the aquifers and agriculture in dry regions. Considering Figure (9), the moisture indexes (Q10-Q20) were respectively 0.12 and 0.16 m2/s (10 and 20 percent of the days in a year (33 and 73 days)), discharges were 0.12 and 0.16 m2/s or more. Considering the average extracted index from the curve, flow duration was obtained, respectively, 0.115 (30% of days in a year (110 days)), 0.111 (40% of days in a year (146 days)), 0.094 (50% of days in a year (183 days)), 0.081(60% of days in a year (219 days)) m2/s. Moreover, the scope of low flow index (Q70 toQ95) for 256 and 347 days of a year was obtained 0.058 and 0.024, respectively. In addition, the flood index (Q5) was 0.28 m2/s (5% of days in a year (18 days)), for which the flood discharge equaled 0.28 or more.



4-Conclusions
Considering the performance evaluation criteria, the performance of SWAT in dry basins having statistics was good and satisfactory in the daily scale of calibration and validation phase. According to the results of administering the SWAT model in the basin lacking Sukcham statistics, the average daily runoff flow (0.107 m2/s) and the average volume of total annual outlet runoff (million m2) of this basin have been estimated. Then, the flow duration curve was drawn for the Sukcham River in the hydro office-FDC software. Considering the results of the flow duration curve of the Sukcham River, it could be concluded that the scope of moisture, moderate and low flow indexes were respectively, (0.12-0.16), (0.081-0.115), and (0.024-0.058) m2/s. Moreover, the flood index (Q5) was obtained 0.28 m2/s for Sukcham River; which meant that regarding 5 % of the days in a year (18 days), the flood discharge equaled 0.28 m2/s or more. The extraction of these results may help in better recognition of hydrologic behavior of basins lacking statistics for planning and management purposes of water sources such as controlling sudden floods and providing drinkable water and agriculture.

کلیدواژه‌ها [English]

  • SWAT
  • Lack of statistics Daily simulation
  • Zoning Approach
  • Flow Duration Curve
  • Khoncheh and Sock Cham Watersheds
  • Isfahan Province
 
Abbaspour, K. C. (2013). SWAT-CUP 2012. SWAT Calibrationand Uncertainty Program-a user Manual.
Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752.
Akbari, M. H., Bahremand, A., Najafinejad, A., & Sheikh, V. (2013). Daily flow Simulation of Chehelchai River-Golestan Province Using SWAT Model. (In Persian)
Ang, R., & Oeurng, C. (2018). Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water Science, 32(1), 89-101.
Arnold, J. G., Allen, P. M., & Bernhardt, G. (1993). A comprehensive surface-groundwater flow model. Journal of Hydrology, 142(1-4), 47-69.
Arnold, J., Engel, B., & Srinivasan, R. (1993). A continuous time, grid cell watershed model. Application of Advanced Information Technologies for Management of Natural Resources, 17-19.
Bao, Z., Zhang, J., Liu, J., Fu, G., Wang, G., He, R., Liu, H. (2012). Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions. Journal of Hydrology, 466, 37-46.
Bezabih, A. W. (2021). Evaluation of small hydropower plant at Ribb irrigation dam in Amhara regional state, Ethiopia. Environmental Systems Research, 10(1), 1-9.
Beck, H. E., van Dijk, A. I., De Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., & Bruijnzeel, L. A. (2016). Global‐scale regionalization of hydrologic model parameters. Water Resources Research, 52(5), 3599-3622.
Blainski, É., Porras, E. A. A., Garbossa, L. H. P., & Pinheiro, A. (2017). Simulation of land use scenarios in the Camboriú River Basin using the SWAT model. RBRH, 22.
Cerro, I., Antigüedad, I., Srinavasan, R., Sauvage, S., Volk, M., & Sanchez‐Perez, J. M. (2014). Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer. Journal of Environmental Quality, 43(1), 67-74.
Cislaghi, A., Masseroni, D., Massari, C., Camici, S., & Brocca, L. (2020).Combining a rainfall–runoff model and a regionalization approach for flood and water resource assessment in the western Po Valley, Italy. Hydrological Sciences Journal, 65(3), 348-370.
Dessu, S. B., & Melesse, A. M. (2013). Impact and uncertainties of climate change on the hydrology of the Mara River basin, Kenya/Tanzania. Hydrological Processes, 27(20), 2973-2986.
Ercan, M. B., Goodall, J. L., Castronova, A. M., Humphrey, M., & Beekwilder, N. (2014). Calibration of SWAT models using the cloud. Environmental Modelling & Software, 62, 188-196.
Fohrer, N., Dietrich, A., Kolychalow, O., & Ulrich, U. (2014). Assessment of the environmental fate of the herbicides flufenacet and metazachlor with the SWAT model. Journal of Environmental Quality, 43(1), 75-85.
Fu, C., James, A. L., & Yao, H. (2014). SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments. Journal of Hydrology, 511, 719.735
Ghazavi, R., Nadimi, M., Omidvar, E., & Imani, R. (2018)The Study of the Effects of the Future Climate Change on Discharge Variation of the Herochay River using SWAT and LARS-WG. Hydrogeomorphology, 4(15), 54-79. (In Persian) (In Persian)
Glavan, M., White, S., & Holman, I. P. (2011). Evaluation of river water quality simulations at a daily time step–Experience with SWAT in the Axe Catchment, UK. CLEAN–Soil, Air, Water, 39(1), 43-54.
Gong, Y., Shen, Z., Liu, R., Hong, Q., & Wu, X. (2012). A comparison of single-and multi-gauge based calibrations for hydrological modeling of the Upper Daning River Watershed in China's Three Gorges Reservoir Region. Hydrology Research, 43(6), 822-832.
Jakada, H., & Chen, Z. (2020). An approach to runoff modelling in small karst watersheds using the SWAT model. Arabian Journal of Geosciences, 13).8
Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., & Pulido-Velazquez, D. (2018). A Comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of Peninsular Spain. Water, 10(2), 192.
Jung, C. G., & Kim, S. J. (2018). Assessment of the water cycle impact by the Budyko curve on watershed hydrology using SWAT and CO2 concentrations derived from Terra MODIS GPP. Ecological Engineering, 118, 179-190.
Kalin, L., Isik, S., Schoonover, J. E., & Lockaby, B. G. (2010). Predicting water quality in unmonitored watersheds using artificial neural networks. Journal of Environmental Quality, 39(4), 1429-1440.
Karami, F., & Bayati Khatibi, M. (2019). The Modeling of Soil Erosion andPrioritizing Sediment Production in Sattarkhan Dam Basin Using MUSLE and SWAT Models. Hydrogeomorphology, 5(18), 115-137. (In Persian)
Karki, R., Srivastava, P., Bosch, D. D., Kalin, L., Lamba, J., & Strickland, T. C. (2020). Multi-Variable Sensitivity Analysis, Calibration, and Validation of a Field-Scale SWAT Model: Building Stakeholder Trust in Hydrologic and Water Quality Modeling. Transactions of the ASABE, 63(2), 523-539.
Kavian, A., Bahrami, M., & Rouhani, H. (2014). Performance Evaluation of SWAT Model to estimate surface runoff in Kachik Watershed, Golestan Province. Watershed Managment Research, 27(2-103), 22-32. (In Persian)
Kumar, N., Singh, S. K., Srivastava, P. K., & Narsimlu, B. (2017). SWAT Model calibration and uncertainty analysis for streamflow prediction of the Tons River Basin, India, using Sequential Uncertainty Fitting (SUFI-2) algorithm. Modeling Earth Systems and Environment, 3(1), 30.
Lee, S., Kim, J., & Hur, J. W. (2013). Assessment of ecological flow rate by flow duration and environmental management class in the Geum River, Korea. Environmental earth sciences, 68(4), 1107-1118.
Leye, I., Sambou, S., Sané, M. L., Ndiaye, I., Ndione, D. M., Kane, S., . . . Cissé, M. T. (2020). Hydrological Modeling of an Ungauged River Basin Using SWAT Model for Water Resource Management Case of Kayanga River Upstream Niandouba Dam. Journal of Water Resources and Ocean Science, 9(1), 29-41.
Ma, Q., Xiong, L., Li, Y., Li, S., & Xu, C.-Y. (2018). Partitioning multi-source uncertainties in simulating nitrogen loading in stream water using a coherent, stochastic framework: Application to a rice agricultural watershed in subtropical China. Science of the Total Environment, 618, 1298-1313.
Marin, M., Clinciu, I., Tudose, N. C., Ungurean, C., Adorjani, A., Mihalache, A. L., . . . Cacovean, H. (2020). Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environmental Research, 109330.
Mengistu, A. G., van Rensburg, L. D., & Woyessa, Y. E. (2019). Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. Journal of Hydrology: Regional Studies, 25, 100621.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Naderi, M., Ildoromi, A., Nouri, H., Aghabeigi Amin, S., & Zeinivand, H. (2018). The Impact of Land Use and Climate Change on Watershed Runoff Using SWAT Model (Case Study: Garin Watershed). Hydrogeomorphology, 4(16), 61-79.
Nathan, R., & McMahon, T. (1990). Identification of homogeneous regions for the purposes of regionalisation. Journal of Hydrology, 121(1-4), 217-238.
Noori, N., & Kalin, L. (2016). Coupling SWAT and ANN models for enhanced daily streamflow prediction. Journal of Hydrology, 533, 141-151.
Oliver, C., Radcliffe, D., Risse, L., Habteselassie, M., Mukundan, R., Jeong, J., & Hoghooghi, N. (2014). Quantifying the Contribution of On‐Site Wastewater Treatment Systems to Stream Discharge Using the SWAT Model. Journal of environmental quality, 43(2), 539-548.
Parajka, J., Merz, R., & Blöschl, G. (2005). A Comparison of Regionalisation Methods for Catchment Model Parameters.
Rafiei Emam, A., Kappas, M., Hoang Khanh Nguyen, L., & Renchin, T. (2016). Hydrological modeling in an ungauged basin of Central Vietnam using SWAT model. Hydrology and Earth System Sciences Discussions, 1-33.
Rojas‐Serna, C., Lebecherel, L., Perrin, C., Andréassian, V., & Oudin, L.(2016).How should a rainfall‐runoff model be parameterized in an almost ungauged catchment? A methodology tested on 609 catchments. Water Resources Research, 52(6), 4765-4784.
Rouhani, H., Willems, P., Wyseure, G., & Feyen, J. (2007). Parameter estimation in semi‐distributed hydrological catchment modelling using a multi‐criteria objective function. Hydrological Processes: An International Journal, 21(22), 2998-3008.
Saha, P. P., Zeleke, K., & Hafeez, M. (2014). Streamflow modeling in a fluctuant climate using SWAT: Yass River catchment in south eastern Australia. Environmental Earth Sciences, 71(12), 5241-5254.
Samuel, J., Coulibaly, P., & Metcalfe, R. A. (2011). Estimation of continuous streamflow in Ontario ungauged basins: comparison of regionalization methods. Journal of Hydrologic Engineering, 16(5), 447-459.
Senent-Aparicio, J., Pérez-Sánchez, J., Carrillo-García, J., & Soto, J. (2017). Using SWAT and Fuzzy TOPSIS to assess the impact of climate change in theheadwaters of the Segura River Basin (SE Spain). Water, 9(2), 149.
Srinivasan, R., Zhang, X., & Arnold, J. (2010). SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Transactions of the ASABE, 53(5), 1533-1546.
Swain, J. B., & Patra, K. C. (2017). Streamflow estimation in ungauged catchments using regionalization techniques. Journal of Hydrology, 554, 420-433.
Tegegne, G., & Kim, Y. O. (2018). Modelling ungauged catchments using the catchment runoff response similarity. Journal of Hydrology, 564, 452-466.
Teshome,F. T., Bayabil, H. K., Thakural, L., & Welidehanna, F. G. (2020). Modeling Stream Flow Using SWAT Model in the Bina River Basin, India. Journal of Water Resource and Protection, 12(03), 203.
Tolson, B. A., & Shoemaker, C. A. (2004). Watershed modeling of the Cannonsville basin using SWAT2000: model development, calibration and validation for the prediction of flow, sediment and phosphorus transport to the Cannonsville Reservoir. Rep. Prepared for Cornell Univ.
Wallace, C. W., Flanagan, D. C., & Engel, B. A. (2018). Evaluating the effects of watershed size on SWAT calibration. Water, 10(7), 898.
Warusavitharana, E. (2020). Semi-distributed parameter optimization and uncertainty assessment for an ungauged catchment of Deduru Oya Basin in Sri Lanka. International Journal of River Basin Management, 18(1), 95-105.
Yadav, M., Wagener, T., & Gupta, H. (2007). Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in water resources, 30.1756-1774, 80.
Yang, X., Magnusson, J., &Xu, C.-Y. (2019). Transferability of regionalization methods under changing climate. Journal of Hydrology, 568, 67-81.
Yang, X., Magnusson, J., Huang, S., Beldring, S., & Xu, C.-Y. (2020). Dependence of regionalization methods on the complexity of hydrological models in multiple climatic regions. Journal of Hydrology, 582, 124357.
Yilmaz, M. U., & Onoz, B. (2020). A Comparative Study of Statistical Methods for Daily Streamflow Estimation at Ungauged Basins in Turkey. Water, 12(2), 459.
Zhang, X., Srinivasan, R., & Hao, F. (2007). Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Transactions of the ASABE, 50(3), 901-910.