نوع مقاله : پژوهشی

نویسنده

دانشیار دانشگاه محقق اردبیلی- دانشکده کشاورزی و منابع طبیعی مغان

چکیده

در تحقیقات منابع آب، تعیین دبی سیلاب حوضههای مختلف اهمیت بسیار زیادی دارد. بنابراین، این مطالعه با هدف تعیین حداکثر سیلاب با دوره بازگشت‌های 10، 25، 50 و 100 سال با استفاده از مدل رگرسیونی و خصوصیات فیزیوگرافی زیرحوضههای حوضه درهرود با مساحت 12900 کیلومتر مربع در استان اردبیل، انجام شده است. در این پژوهش، داده‌های دبی 16 ایستگاه هیدرومتری جمع‌آوری و تکمیل گردید و سیلاب با دوره بازگشتهای مختلف محاسبه گردید. سپس با استفاده از نرم‌افزارهای ArcGIS و WMS مشخصات فیزیوگرافی زیرحوضه‌ها، شامل مساحت، شیب، ضریب شکل و ارتفاع متوسط، زمان تمرکز و شماره منحنی زیرحوضه‌ها استخراج گردید و مدل رگرسیونی سیلاب‌ها محاسبه گردید. نتایج کالیبراسیون مدل نشان‌داد که میزان حداکثر دبی سیلاب برآورد شده توسط مدل رگرسیونی برای دوره بازگشت‌های مختلف به خوبی با سیلاب مشاهده شده مطابقت دارد. به‌طوریکه میزان ضرییب تبیین در دوره بازگشت‌های 10، 25، 50 و 100 سال به‌ترتیب برابر97، 6/96، 8/95 و 7/94 درصد برآورد گردید. نتایج نشان‌داد مدل رگرسیون خطی با دقت بسیار خوبی قادر به پیشبینی میزان سیلاب زیرحوضههای درهرود با استفاده از پارامترهای فیزیوگرافی حوضه میباشد و با افزایش دوره بازگشت به میزان جزئی از دقت مدل کاسته میشود. همچنین نمودارهای پراکندگی نشان داد که کلیه مدل‌ها بسیار جزئی از حالت کم‌برآورد برخوردار بودند و پراکندگی نقاط حول محور یک به یک برای تمام دوره بازگشت‌ها، بسیار مناسب بود.

کلیدواژه‌ها

عنوان مقاله [English]

Estimation of Flood Discharge in Darrehrood Sub-Basins of Ardebil province Using Basin Physiographic Characteristics

نویسنده [English]

  • yaser hoseini

Associate Professor of Moghan College of Agriculture & Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

چکیده [English]

1-Introduction
Flood is a natural phenomenon, which threatens the life and properties of a large number of people all over the world, yearly. Flood discharge, regarding water resource exploitation, flood control, construction of dams, basin management, and hydrologic studies, is of high importance in studies. Therefore, the accuracy of these studies and the safety of waterworks and water structures depend on the methods of studies to a large extent. It is impossible to manage water resources in basins without the accurate determination of the peak flood discharge. The advances in flood estimation techniques have made it possible to use rainfall-runoff models to assess the hydrographic properties of the flood in watersheds and decrease the risks of the flood. In studies on water resources, it is of high importance to determine the flood discharge of different basins. Studies of Dile and Srinivasan (2014) and Hoseini et al. (2017) showed that basin level and rainfall can be the most important factor in runoff flow. Consequently, proper simulation and modeling of flood runoff are the important parameters in flood management in the region. However, it is necessary to use new models to determine flood hydrograph parameters. So, this study aimed to determine the peak flood discharge of the Darrehrood basin using regression mode for return periods of 10, 25, 50, and 100 years.
2-Methodology
Darrehrood basin is located in Northwest Iran. The basin is surrounded by mountains and is considered the main basin of Ardabil Province. It lies within 47°30' to 48°55' longitude and 37°45' to 39°42' latitude. Its area is approximately 12900 km2. Discharge data were collected from 16 hydrometric stations with a statistical period of 15 years during 2001-2015. Incomplete data related to stations were completed using statistical methods and considering the best statistical distribution of floods in the studied sub-basins, floods with different return periods were calculated then the physiographic characteristics of sub-basins that affect flood rate include: area, slope, shape factor,

 
height average, concentration-time, and curve number achieved using ArcGIS and WMS (watershed modeling system). To evaluate the model, maximum error (ME), root mean square error (RMSE), relative percentage error (ε), mean absolute error (MAE), coefficient of determination (R2), Coefficient of residual mass (CRM), and model efficiency (EF) were used.
3-Results and Discussion
The model calibration results showed that the simulated peak discharge and flow volume are in good correspondence with the observed values, so that, the lowest goodness of fit (R2) value in the return periods of 10, 25, 50, and 100 years were estimated to be 97, 96.6, 95.8 and 94.7 %, respectively. The results showed that the linear regression model with very good accuracy can predict the peak discharge in the sub-basins in Darrehrood using the physiographic parameters of the basin and with increasing the return period, the accuracy of the model is slightly reduced. Model evaluation indicators for the return period of 100 years include root mean square error (RMSE), relative percentage error (ε), mean absolute error (MAE), Coefficient of residual mass (CRM), and model efficiency (EF) were calculated 40.75, 52.12, 0.52, 0.92 and 0.62 respectively. Cross-validation diagrams showed that all models were partially underestimated and the scatter of points around the one by one axis was very suitable for the whole return periods. According to the paired t-test of the difference between predicted and actual values in different return periods in the level confidence of 1% are not significant.
4-Conclusions
The results of this study show that the model has good accuracy for estimating floods in sub-basins of Ardabil province.

کلیدواژه‌ها [English]

  • Regression
  • Physiographic characteristics
  • Watershed
  • WMS
  • GIS
  • Flooding
  • Darrehrood
  • Ardabil Province
 
Asadi, D.A. (2014). Study of Flooding Potential and Its Zoning in the Karoon 4 Basin Using GIS, Dissertation Master of Science, University of Abarkooh PayameNoor. [In Persian]
Azam, M., Hyung, S.K., & Seung, J.M. (2017). Development of Flood Alert Application in Mushim Stream Watershed Korea. International Journal of Disaster Risk Reduction, 21: 11-26.
Azhar, H(2017). Estimation of Design Flood Discharge for Kakkadavu Dam in Kariangode River Basin, Int J Environ Sci Nat Res. 4(1), 555-560.
Badri, B., Zare Bidaki, R., Honarbakhsh, A., & Atashkhar, F. (2016). Prioritization of Flooding Potential in Beheshtabad Subbasins. Physical Geography Research Quarterly, 48(1), 143-158. [In Persian]
Brouwer, R., & Van, E.K. (2004). Reintegrated Ecological, Economic and Social Impact Assessment of Alternative Flood Control Policies in the Netherlands. Ecological Economics, 50:1-21.
Dile, Y. T., & Srinivasan, R. (2014), Evaluation of CFSR Climate data for Hydrologic Prediction in Data-scarce Watersheds: an Application in the Blue Nile River Basin. J Am Water Resource Assoc. 50, 1226–1241.
Esmaeili, h., Akhond Ali, A., Zarei, H., & Taghian, M. (2018). Regional Flood AnalysisVia Comparison of the M5 Decision Tree Algorithm and Regression Models. Irrigation Sciences and Engineering. 40(4):183-195. [In Persian]
Ghaemi, H., & Morid, S. (1996). Flood model of Karkheh sub-basins. Nivar Magazine, No. 30, Meteorological Organization Publications. [In Persian]
Ghaffarie, A., Behruz, S., & Ostadibabakandi, E. (2016). Estimation of Curve Number and Runoff Height in Arc-GIS, Case Study, Meshkinshahr City. Hydrogeomorphology. 3(9), 159-175. [In Persian]
Hejazi, A., & Marzbani, M. (2015). Estimation of Maximum Runoff Height and Discharge Using Curve Number Method Case Study: Sarab Darehshahr Watershed. Hydrogeomorphology. 2(5), 63-81. [In Persian]
Hoseini, Y., Azari, A., & Pilpayeh, A. (2017). Flood modeling using WMS Model for Determining Peak Flood Discharge in Southwest Iran case study: Simili basin in Khuzestan Province. Applied Water Science, 7, 33-55.
Jena, J., & Nath, S. (2020). An Empirical Formula for Design Flood Estimation of Un-Gauged Catchments in Brahmani Basin, Odisha. J. Inst. Eng. India Ser. A 101,1–6.
Saghafian, B., Noroozpour, S., Kiani, M., & Rafiee Nasab. A. (2016). Coupled Modclark-curve Number Rainfall-runon-runoff Model. Arabian Journal of Geosciences, 9 (4), 2–13.
Mlinsky, D., Walega, A., Stachura, T., & Kaczor, G., (2019). A New Empirical Approach to Calculating Flood Frequency in Ungauged Catchments: A Case Study of the Upper Vistula Basin, Poland. Water. 11(3), 601-622.
Rahaman, S.A., Ajeez, S.A., Aruchamy, S., & Jegankumar, R. (2015). Prioritization of Sub Watershed Based on Morphometric Characteristics Using Fuzzy Analytical Hierarchy Process and Geographical Information System – A Study of Kallar Watershed, Tamil Nadu. Modeling Earth Systems and Environment, 3(1), 1-9.
Rasoulzadeh, A., Azartaj, A., Farzi, E., & Farzi, P. (2016). Derivation and investigation of regional flood analysis models as a function of return period (Case study: Ardabil province). Journal of Water and Soil Conservation. 22(4), 261-268. [In Persian]
Shaabani Bazneshin, A., Emadi, A., & Fazloula. R. (2017). Investigation the Flooding Potential of Basins and Determination Flood Producing Areas (Case Study: NEKA Basin). Journal of Watershed Management.7 (14): 28-20[In Persian]
Sharifi Paichoon, M., Omidvar, K., & Motazaker, K. (2019). Assessment of flooding using cluster analysis and multivariable regression methods with emphasis on hydro geomorphological parameters (Case study: Maroon catchment). Journal of Natural Environmental Hazards. 8(21):75-92. [In Persian]
Shiravi, B., Golkarian, A., & Abotalebi pirnaeemi, A. (2015). Effect of check dams on time of concentration and reduction of flood peak (Case study: Gash watershed). Journal of Rangeland and Watershed Management, 68(2), 307-322. [In Persian]
WMS7.1. 2006. User Manual. Bringhum Young Universitiy, p. 250.
Zare Abyaneh, H., & Bayat Varkeshi, M. (2011). Evaluation of artificial intelligentand empirical models in estimation of annual runoff. Journal of Water and Soil. 25(2): 365-379. [In Persian]