نوع مقاله : پژوهشی

نویسندگان

1 دانشجو دکتری، دانشکده برنامه ریزی وعلوم محیطی، دانشگاه تبریز، تبریز, ایران

2 استاد دانشکده ی برنامه ریزی وعلوم محیطی ، دانشگاه تبریز

3 دانشگاه تهران

4 دانشگاه تبریز

چکیده

جنگل‌های مانگرو برای هزاران سال نقش قابل ملاحظه‌ای را در اقتصاد جوامع انسانی بر عهده داشته‌اند. لذا شناسایی و سنجش تغییرات مرزهای مانگروها در طول زمان، می‌تواند نقش مهمی را در برنامه‌ریزی و انجام اقدامات حفاظتی مؤثر و کاهش آسیب‌پذیری مانگروها نسبت به مخاطرات طبیعی و انسانی داشته باشد. هدف این پژوهش بررسی تغییرات جنگل‌های مانگرو و ارتباط این تغییرات با هیدرودینامیک دریا و مورفولوژی ساحلی در بخش‌هایی از شمال و شرق تنگه هرمز طی بازه زمانی 47 سال می‌باشد. با استفاده از تصاویر ماهواره‌ای و انجام پیش‌پردازش‌ها و طبقه‌بندی آن‌ها به روش‌های SVM، MLC و ANN و ارزیابی دقت نقشه-ها روش SVM با کسب بالاترین درصد دقت، برای تهیه نقشه طبقه‌بندی تمام تصاویر انتخاب شد. نتایج نشان می‌دهد که در قسمت شمالی تنگه هرمز در تمامی سال‌ها مساحت جنگل‌های حرا افزایش پیدا کرده‌اند اما در قسمت شرقی مورد مطالعه همواره با روند کاهشی و افزایشی مواجه می باشد و به طور کلی توسعه قابل توجهی در طی این 47 سال در مانگروهای این قسمت مشاهده نمی‌شود. هر چند که با توجه به بررسی ویژگی‌های ژئومورفیک منطقه مانند شیب، توپوگرافی و وجود خورها و استران‌ها و رسوبات وارده از رودخانه‌های حسن‌لنگی، گز و حیوی و همچنین متوسط جزر و مد منطقه و گسترده‌ای که در بر می‌گیرد، مناطق مورد مطالعه پتانسیل بیشتری برای توسعه جنگل‌های مانگرو دارد. نتایج حاصل از این تحقیق می‌تواند با فرآهم آوردن اطلاعات دقیق در خصوص پیشروی و یا پسروی مانگروها در بخش‌های ساحلی مختلف، کمک چشمگیری به اجرای اقدامات حفاظتی و احیاء مانگروهای ایران کند.

کلیدواژه‌ها

عنوان مقاله [English]

Analysis of changes in the range of mangrove forests in the north and east of the Strait of Hormuz affected by coastal morphology and hydrodynamics of the Persian Gulf

نویسندگان [English]

  • fatemeh parhizkar 1
  • Masume Rajabi 2
  • Mojtaba Yamani 3
  • Davoud Mokhtari 4

1 Ph.D. candidate, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

2 - Professor, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

3 Faculty of Geography, University of Tehran, Tehran , Iran

4 Academic member

چکیده [English]

1-Introduction
For thousands of years, mangrove forests have played a significant role in the economy and sustainable livelihoods of human societies. Therefore, identifying and measuring changes in the boundaries of mangroves over time can play an important role in planning and conducting effective protection measures and reducing the vulnerability of mangroves to natural and human hazards. This study aimed to investigate changes in mangrove forests and the relationship between these changes and marine hydrodynamics and coastal morphology in parts of the north and east of the Strait of Hormuz for 47 years.
2-Methodology
In this study, Landsat satellite images, MSS, TM, ETM +, OLI sensors from 1972 to 2019 were used to monitoring mangrove forest changes in the west of the Hormuz Strait. In the next step, the necessary preprocesses (radiometric and atmospheric corrections) were applied to the images in ENVI 5.3 software. And the classification of images was done by SVM, MLC, and ANN methods, and considering that to finalize the land use map, all classification accuracy indicators should be adjusted with one or more valid statistical indicators. The kappa index and general accuracy are among the statistical methods used. Post-processing operations also included the integration of classes that were applied to make the land use map more eloquent and eliminate single pixels on different classes. In the next step, the Change Detection method was used to detect changes and tell the results of the classifications. The next step is to convert the classified image to polygon and transfer it to the Arc GIS environment to manage the classes. Of course, the class that is most important to us here is the Mangrove Forest class, which was examined in the period 1972-2019. After the changes in the mangrove

 

forests were identified, with the help of 1: 25000 topographic maps, contours of 2 meters of the range were prepared and the slope map was prepared using DEM images of the area. Also, using the half-hour tide data, the minimum, maximum, and average tide rates of Jask, Shahid Rajaee, Hormoz, and Sirik stations were calculated and finally, these data and maps were prepared to examine the development potential of mangrove forests.
3-Results and Discussion
Land use maps were developed using Landsat images using three pixel-based classification algorithms (MLC, SVM, ANN) and the accuracy of the results was assessed using random points. The results showed that the highest overall accuracy and kappa coefficient were 99.44 and 0.99 for region A, and 98.41, 0.97, for region B, for SVM, respectively. Our study showed that SVM could be the most appropriate classification method for this study area. Therefore, SVM land use maps were prepared for the study area for 1972, 1987, 2002, and 2019. After preparing the land-use change map, it was stated that mangrove forests in region A accounted for 55.84% and in region B for 36.18%, tidal areas in region A accounted for 27.63%, and in Area B is 36.58 percent, Water Areas A is 3.04 percent, Area B is 1.78 percent, dry land is 15.37 percent and region B is 99.99. 7% have changed over the past 47 years. To explore the potential for the expansion of mangrove forests, we examined the slope of the region and its relationship with the average tide in the region. Comparing the results of the increasing and decreasing trend of mangrove forests with curves corresponding to the average tidal level and morphological features of the region, we conclude that the study area is about the hydrodynamic characteristics of the sea such as the average tidal area and extent. The catchment area, the height of the waves, and the coastal morphology such as slope and sediments and the water entering the areas from the Hasanlangi River and the Gaz and Hivi rivers have a very high potential for further development of mangrove forests.
4-Conclusion
The results show that in the northern part of the Strait of Hormuz, the area of mangrove forests has increased in all the years, but in the eastern part of the study, we have always faced a decreasing and increasing trend and we don't see this part significant development during these 47 years in mangroves. However, according to the study of the geomorphic features of the region such as slope, topography, and the presence of Sabkha and Firth and sediments from the rivers of Hassan Langi, Gaz, and Hivi, as well as the average tide of the region and the vast area it covers, The study has the potential to develop mangrove forests. The results of this study can provide significant

 
information about the progress or regression of mangroves in different coastal areas, can significantly help to implement protection measures and rehabilitate Iranian mangroves.

کلیدواژه‌ها [English]

  • "Coastal Geomorphology"
  • "Sea Dynamics"
  • " Mangrove Forest"
  • "East of the Strait of Hormuz"
 
Alongi, D.M. (2002). Present state and future of the world's mangrove forests. Environmental Conservation, 29: 331-349.
Andariyani, S. (2014). Application of remote sensing techniques and geographic information system in the study of land use changes and its impact on river flow (Case study: Sufi Chay), Master Thesis, Faculty of Geography and Planning, University of Tabriz.
Anderson, G.P., Felde, G.W., Hoke, M.L., Ratkowski, A.J., Cooley, T.W., Chetwynd, J.H., Jr., Gardner, J.A.,Adler-Golden,  S.M., Matthew, M.W.,  Berk,  A.  (2002). MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes). In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII (Proceedings of SPIE); Shen, S.S., Lewis, P.E., Eds.; Society of Photo Optics: Orlando, FL, USA, pp. 65–71.
Arekhi, S., Adibnejad, M. (2011). Efficiency assessment of the of Support Vector Machines for land use classification using Landsat ETM+ data (Case study: Ilam Dam Catchment), Iranian Journal of Rangeland and Desert Research, NO3, pp. 440-420.
Asghari, S., Poorahmad, M. (2016). Identification and extraction of changes in Zarrineh River between 1989 and 2014 using satellite image processing, Journal of Hydrogeomorphology, No:5 1-16.
Behruzi rad, B. (1998). Characteristics and importance of important international wetlands on the shores of the Persian Gulf with emphasis on Kolahi and Tiab, Jornal of Environmental, 25: 49-57.
Blasco, F., M.  Aizpuru and C. Gers.  (2001). Depletion of Mangrove of continental Asia. Wetland Ecol. Manag. 9: 245-256.
Boschetti, L., Stephane, Flasse, p. and Pietro, A. Brivio.  (2004). Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary, Remote Sensing of Environment, 91: 280–292.
Chavez, p. (1996). "Image-based atmospheric corrections - Revisited and improved", Photogram. Eng. Remote Sensing, 62: 1025–1036.
Carney, J., Gillespie, T. W. and Richard Rosomoff R. (2014). Assessing forest change in a priority West African mangrove ecosystem: 1986–2010. Geoforum, 53: 126–135.
Congalton, R. G., Green, K. (1999). Assessing the accuracy of remotely sensed data: principles and practices, Boca Raton: Lewis Publications.
Danehkar, A. 2001. Mangroves forests zonation in Gaz and Harra international wetlands. The Environment Scientific Quarterly Journal, 34: 43-49. Danekar, A., 1998, Sensitive marine regions of Iran, Journal of Environmental, 24: 28-38.
Dehghan, M. (2008). Potential mapping of mangrove forests of the Gheshm Island using GIS, Master Thesis in Forestry, University of Kordestan, p. 57.
Dolan, R., Fenster, M.S. and Holme, S.J. (1991). Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 7: 723-744.
Duke, N.C. (1992). Mangrove Floristics and Biogeography, In: Tropical Mangrove Ecosystems, A.I. Robertson & D. M. Alongi (eds.), American Geophysical Union. Washangton, D. C. (USA).
Ellison, J.C. and Zouh, I. (2012). Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa. Biology, 1: 617-638.
Ethnobiology, Socio-economic and management of mangrove forests: a review. Aquatic Botany, 89: 220-236.
Fatemi, B., Rezaee, Y. (2012).Fundamentals of Remote Sensing, Tehran, Azadeh Publications.
Gandini, M. L., Usunoff, E. J. (2004). SCS curve number estimation using remote sensing NDVI in a GIS environmental, Environmental Hydrology, (12): 168-179.
Gang PO, Agatsiva J L. (1992). The current status of mangroves along the Kenyan coast: a case study of Mida Creek mangroves based on remote sensing. In: The Ecology of Mangrove and Related Ecosystems. Springer: 29–36.
Gilman, E., Ellison, J. and Coleman, R. (2007). Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position, Environmental Monitoring Assessment, 124: 112-134.
Jensen JR, Lin H, Yang X, Ramsey III E, Davis BA, Thoemke CW. 1991. The measurement of mangrove characteristics in southwest Florida using SPOT multispectral data. Geocarto International, 6(2): 13-21.
Kaplowitz, M.D. (2001). Assessing mangrove products and services at the local level: the use of focus groups and individual interviews. Landscape and Urban Planning, 56: 53-60.
Kristensen, E., Bouillon, S., Dittmar, T. and Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany, 89: 201-219.
Kolios, S., Stylios, C.  D. (2013).  "Identification  of  land  cover  land  use  changes  in  the greater  area  of  the  Preveza  peninsula  in  Greece  using  Landsat  satellite  data",  Applied Geography, 40: 150-160.
Lucas, R.M., Ellison, J.C., Mitchell, A., Donnelly, B., Finlayson, M. and Milne, A.K. (2002). Use of stereo aerial photograp hy for quantifying changes in the extent and height of mangroves in tropical Australia, Wetlands Ecology and Management, 10: 159-173.
Mantero, P., Moser, G., Serpico, S. B. (2005), "Partially supervised classification of remote sensing images through SVM-based probability density estimation", IEEE Trans. on Geoscience and Remote Sensing, 43: 559-570.
Mehrabian, A., Naqinezhad, A., Mahiny, A.S., Mostafavi, H., Liaghati, H. and Kouchekzadeh, M. (2008). Vegetation mapping of the Mond Protected Area of Bushehr Province (South ‐west Iran). Journal of Integrative Plant Biology, 51: 251-260.
McIvor, C.C., Ley, J.A. and Bjork, R.D. (1997). Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes: a review. Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, 117-146.
Mirzapoor, H., Haghizade, A., Tahmasebipoor, N., Zeinivand, H. (2019). Predicting Land Use Change Using Auto-Markov Cell Model in Lorestan Badavaran Watershed, Journal of Hydrogeomorphology, No: 20 79-99.
Nitze, A., Schulthess, B., Asche, H. (2012). Comparison of machine Learning algorithms random forest, artificial neural network and support vector Machine to maximum Likelihood for supervised  crop  type  classification",  Proceedings  of  the  4th  Gambia,  Rio  de  Janeiro Brazil, pp 35-40.
Noori, R., Abdoli, M. A., Ameri, A., Jalili-Ghazizade, M. (2008). "Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad, Environmental Progress and Sustainable Energy, 28 (2): 249-258.
Rakotomavo, A. and Ois Fromard F. (2010). Dynamics of mangrove forests in the Mangoky River delta, Madagascar, under the influence of natural and human factors, Forest Ecology and Management, 259: 1161–1169.
Rao, S., Sharma, A. (2013). Cost parameter analysis and comparison of linear Kernel and Hollinger Kernel mapping of SVM on image retrieval and effects of  addition of positive images, International Journal of Computer Applications, 73 (2): 5-12.
Roy, P. S., Sharma, K. P., Jain, A. (1996). Stratification of density in dry deciduous forest usingsatellite remote sensing digital data-An approach based on spectral indices, J. Biosci, 21: 723–734.
Rahman M, Csaplovics E, Koch B. (2005). An efficient regression strategy for extracting forest biomass information from satellite sensor data, International Journal of Remote Sensing, 26(7): 1511-1519.
Safaesna, H. (2001). Investigating the structure of mangrove forests on Mardo Island, Bachelor's thesis, Yazd University.
Shalkoff, R.  J. (1997). Artificial Neural Networks, McGraw-Hill Companies Pub, New yourk.
Tamin, N.M., Zakaria, R., Hashim, R. and Yin, Y. (2011). Establishment of Avicennia marina mangroves on accreting coastline at Sungai Haji Dorani, Selangor, Mzalaysia. Estuarine, Coastal and Shelf Science, 94: 334 -342.
Shearman, P.L. (2010). Recent change in the extent of mangroves in the northern Gulf of Papua, P apua New Guinea. Ambio, 39: 181-189.
UNEP-WCMC. (2006). In the Front Line: Shoreline Protection and Other Ecosystem Services from Mangroves and Coral Reefs. UNEP-WCMC, Cambridge, 33p.
Valiela, I., J. L. Bowen and J.K. York. (2001). Mangrove Forest: One of the World’s threatened Major Tropical Environments. BioScience, 51: 807-815.
Vapnik, V. N., (1999). The nature of statistical Learning theory, Second Edition, New York: Springer-Verlag.
Walters, B.B., Rönnbäck, P., Kovacs, J.M., Crona, B., Hussain, S.A., Badola, R. and Dahdouh -Guebas, F.  (2008). Ethnobiology, socio-economic and management of mangrove forests: a review. Aquatic Botany, 89: 220-236.