نوع مقاله : پژوهشی

نویسندگان

1 استاد گروه آموزشی ژئومورفولوژی دانشکده جغرافیا و برنامه ریزی دانشگاه تبریز

2 استاد گروه ژئومورفولوژی دانشگاه تبریز

3 دانشجوی دکتری ژئومورفولوژی دانشگاه تبریز

چکیده

سیلاب یکی از رایج‌ترین مخاطرات طبیعی است که سالانه موجب خسارات جانی و مالی فراوانی در سراسر جهان می‌گردد. پهنه‌بندی پتانسیل سیل‌خیزی یکی از روش‌هایی است که جهت کاهش خطرات ناشی از سیل می‌توان اتخاذ نمود. در این منطقه مطالعه­ ی جامعی در این زمینه صورت نگرفته است و هرسال وقوع سیلاب خسارات زیادی به بار می‌آورد بنابراین هدف از این پژوهش، تعیین پهنه‌های خطر سیلاب در حوضه­ی آبریز شهرچای میانه (بستان آباد - میانه) واقع در شمال غرب ایران می‌باشد. جهت اجرای این مدل از لایه‌های مختلفی همچون شیب، جهت شیب، طبقات ارتفاعی، فاصله از آبراهه، تراکم آبراهه، کاربری اراضی، پوشش گیاهی، لیتولوژی، بارندگی و خاک استفاده گردید. استانداردسازی با استفاده از روش فازی در محیط نرم‌افزار Arc Map صورت گرفت. تحلیل و مدل‌سازی نهایی با استفاده از مدل ویکور انجام گردید. نتایج نشان داد که شیب، بارندگی و جهت شیب بیشترین تأثیر را در وقوع سیلاب، در این حوضه دارند. همچنین با توجه به نتایج به‌دست‌آمده به ترتیب 02/6 و 45/10 درصد از محدوده­ ی موردمطالعه در طبقه بسیار پرخطر و پرخطر قرار دارند.

کلیدواژه‌ها

عنوان مقاله [English]

Zoning flood risk in the Shahr Chai Watershed in Miyaneh using Vikor model

نویسندگان [English]

  • Mohammad Hossein Rezaei Moghaddam 1
  • Davoud Mokhtari 2
  • Majid Shafieimehr 3

1 Professor, Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

2 Professor, Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

3 PhD Student of Geomorphology,Tabriz University

چکیده [English]

Floods are one of the most common natural hazards, causing significant loss of life and property each year. The purpose of this study is to determine the risk areas of floods in Shahr Chai Miyaneh watershed. To implement this model, different layers such as slope, aspect, elevation, distance from river, river density, land use, vegetation, lithology, rainfall and soil were used. The final analysis and modeling was performed using the Vikor model. The results showed that rainfall, slope and distance from the river have the greatest impact on the occurrence of floods in this watershed. Also, according to the obtained results, 5.2 and 1021.7 square kilometers, respectively, are located in a very high-risk and high-risk area. Dangerous and very dangerous areas are mainly located along the main river and mountainous in the steep logic. Due to the high slope and height of the region, it plays an effective role in the amount of runoff and flow peak floods. Also, in the catchment area of Miyaneh Chai city, 2.2, 27.2, 1099.6, 1021.7 and 10.2 square kilometers, respectively, are in a very low risk, low risk, medium, high risk and very high risk area.

کلیدواژه‌ها [English]

  • Flood
  • Zoning
  • Shahar Chai
  • Vikor model
  • Northwest of Iran
Abedini, M., Pirozi, E., Aghayari, L., Ostadi, E., (2017). Flood risk zone in Meshkinshahr city using Vikor model, Quantitative geomorphological research. 14(56), 21-34.
Abedini, M., Beheshti Gavid, E., (2016). The risk of flooding of the Liqwan Chai watershed using the network analysis process model and the geographic information system. Geographical Space, 16(55), 293-312.
Abedini, M., Fathi, M., (2015). Flood hazard zoning using network analysis process (Case study: Khiav chai watershed). Hydro geomorphology, 3, 99-120.
Ahmadi Iikhchi, A., Hajabbassi, M. A., Jalalian, A. (2003). Effects of Converting Range to Dry-farming Land on Runoff and Soil Loss and Quality in Dorahan, Chaharmahal & Bakhtiari Province. JWSS; 6 (4):103-115
Alizadeh, A., (2011). Principles of Applied Hydrology, Ferdowsi University of Mashhad Publications.
Asghari Sareskanroud, S., Pirozi, E., Zinali, B., (2015). Flood risk zoning in Aq Aqlan Chai watershed using Vikor model. Quantitative geomorphological research, 4(3), 231-245.
Chen, L.Y., Wang, T.C., (2009). Optimizing partners choice in IS/IT outsourcing projects: Thestrategicdecision of fuzzy VIKOR, International Journal of Production Economics. Volume 120, Issue 1.
 
Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment20, 100379.
 
De Risi, R., Jalayer,F., De Paola,F., (2015). Meso-scale hazard zoning of potentially flood prone areas. Hydrology, 527, 316 –325.
Faramarzi, H., Hosseini, S., Pourqasemi, H., Farnagi, M., (2020). Evaluation and zoning of flood risk in Golestan National Park. Journal of Eco Hydrology, 6(4), 1055-1068.
Fotouhi, S., Kiyani, S., (2014). Urban flood risk zoning using hierarchical analysis process model - Case study: Nahavand city. Environmental Planning Quarterly, 29, 133-153.
Ghanvati, E., Babaei Aqdam, F., Hemati, T., Rahimi, M., (2015). Potential flooding zoning using fuzzy logic in GIS environment (Case study: Khiav Chai of Meshkinshahr basin). Hydro geomorphology, 3, 121-135.
Ghanvati, E., Karam, A., Agha Alikhani, M., (2012). Assessment and zoning of flood risk in Farahzad basin (Tehran) using fuzzy model. Geography and Environmental Planning, 23(4), 121-138.
Goodarzi, M., Fatehifar, A., (2019). Flood risk zone due to climate change under RCP 8.5 scenario using SWAT hydrological model in GIS environment (Azarshahr Chai basin). Applied Research in Geographical Sciences, 19(53), 99-117.
Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme rainfall events and flood risk in India. Earth System Science, 120(3), 359.
Gül, G. O., Harmancıoğlu, N., & Gül, A. (2010). A combined hydrologic and hydraulic modeling approach for testing efficiency of structural flood control measures. Natural Hazards, 54(2), 245-260.
Haq, M., Akhtar, M., Muhammad, S., Paras, S., & Rahmatullah, J. (2012). Techniques of Remote Sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 15(2), 135-141.
Hejazi, A., Khodayi geshlag, F., Khodayi geshlag, L., (2019). Flood hazard zoning in the Varkesh Chai using HEC-RAS model and HEC-GEO- RAS extension. Journal of Applied Research in Geographical Sciences, 19(53), 137-155.
Ilkhchi, A., Haj Abbasi, M., Jalalian, A., (2002). The effect of changing the use of rangeland to rainfed lands on runoff production. Journal of Agricultural Sciences and Technology and Natural Resources, 6(4), 25-36.
Karam, A., Derakhshan, F., (2012). Flooding, flood assessment and performance appraisal of surface water drainage canals in urban basins Case study: Abshouran basin in Kermanshah. Natural Geography Quarterly, 5(16), 37-55.
Karami, F., Bayati Khatibi, M., (2013). Nikjo, M., Mokhtari, D., Investigation and analysis of active geomorphological and tectonic evidence in the northern basins of Shahrchay Miyaneh. Geographical space, 13(42), 33-53.
Lai, C., Shao, Q., Chen, X., Wang, Z., Zhou, X., Yang, B., & Zhang, L. (2016). Flood risk zoning using a rule mining based on ant colony algorithm. Journal of Hydrology, 542, 268-280.
Lawal, D. U., Matori, A. N., Yusuf, K. W., Hashim, A. M., & Balogun, A. L. (2014). Analysis of the flood extent extraction model and the natural flood influencing factors: A GIS-based and remote sensing analysis. In IOP Conference Series: Earth and Environmental Science (Vol. 18, No. 1, p. 012059). IOP Publishing.
Mahmoudzadeh, H., Yari, F., Vahedi, A., (2017). Application of remote sensing and GIS techniques for flood risk zoning in Urmia city with multi-criteria analysis approach. Natural Geography Research, 49(3), 719-730.
Mousavi, M., Nekahban, S., Rakhshani Moghaddam, H., Hosseinzade, M., (2016). Assessment and zoning of flood risk using TOPSIS fuzzy logic in GIS environment, Case study: Baghmalek watershed. Journal of Natural Environment Hazards, 5(10), 79-98.
Oguntunde, P. G., Friesen, J., van de Giesen, N., & Savenije, H. H. (2006). Hydroclimatology of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002. Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1180-1188.
 
Omidvar, K., Kiyanfar, A., Asgari, Sh., (2010). Expansion of flood potential of Kanjancham watershed. Journal of Natural Geography Research, 77, 73-90.
Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European journal of operational research, 178(2), 514-529.
Pappenberger, F., Beven, K., Horritt, M., & Blazkova, S. (2005). Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. Journal of Hydrology, 302(1-4), 46-69.
Patro, S., Chatterjee, C., Singh, R., & Raghuwanshi, N. S. (2009). Hydrodynamic modelling of a large flood‐prone river system in India with limited data. Hydrological Processes: An International Journal, 23(19), 2774-2791.
Rajabi, A., Rajai, T., Tafti, A., (2018). Chalous River flood zone by combining HEC-RAS model and geographic information system. Scientific-Research Quarterly of the Iranian Geological Society of Engineering, 11(2), 45-60.
Rezaei Moghadam, M., Rajabi, M., Daneshfaraz, R., Kheirizadeh, M., (2016). Extension and study of morphological effects of Zarrineh Roud river floods from Sari Qomish to Nowruzlu dam. Journal of Geography and Environmental Hazards, 17, 1-20.
 Rezaei Moghaddam, M., Hejazi, S., Valizadeh Kamran, KH., Rahimpour, T., (2020). Analysis of hydrogeomorphic characteristics of Alland Chay watershed in order to prioritize sub-basins in terms of flood susceptibility. Journal of Geography and Environmental Hazards, 33, 61-83.  
Rezaei Moghaddam, M., Hejazi, S., Valizadeh Kamran, KH., Rahimpour, T., (2020). Investigation of flood sensitivity of watersheds using hydrogeomorphic indicators (Case study: Aland Chay watershed, northwestern Iran), Quantitative geomorphological research, 9(2), 1 95-214.
Rostayi, Sh., Mousavi, R., Alizadeh Gorji, Gh., (2017). Flooding of Neka Roud watershed using SCS-CN and GIS / RS models. Quantitative Research Journal, 6(1), 108-118.
Saraf, A., Mohagheghzadeh, Gh., Mohagheghzadeh, N., (2017). Shapoor Khasht river flood zoning using aerial images. Journal of Geographical Space, 17(57), 175-194.
Stephan, R. (2002). Hydrologic investigation by the US Geological survey following the 1996 and 1997 floods in the Upper Yellostone River, Montana American Recourses Association. In Annual Montana Section Meeting. Section one (pp. 1-18).
Suthirat, K., Athit, P., Patchapun, R., Brundiers, K., Buizer, J. L., & Melnick, R. (2020). AHP-GIS analysis for flood hazard assessment of the communities nearby the world heritage site on Ayutthaya Island, Thailand. International Journal of Disaster Risk Reduction, 101612.
Vasu, N. N., Lee, S. R., Pradhan, A. M. S., Kim, Y. T., Kang, S. H., & Lee, D. H. (2016). A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index. Engineering Geology, 215, 36-49.
Valizadeh, K., Dalir Hassannia, R., Azeri Amqani, Kh., (2019). Flood zoning and its impact on the surrounding environment using UAV images and geographic information system. Remote Sensing Magazine and Geographic Information System in Natural Resources, 10(3), 59-76.
Vojtek, M., & Vojteková, J. (2019). Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water, 11(2), 364.
Yen an Wu, Ping-an Zhong, Yu Zhang, Biao Ma, Kun Yan, (2015). Integrated flood risk assessment and zonation method: a case study in Huaihe River basin, China. Natural Hazards, 78(1), 635-651.