نوع مقاله : پژوهشی

نویسندگان

1 استاد گروه آموزشی ژئومورفولوژی دانشکده جغرافیا و برنامه ریزی دانشگاه تبریز

2 گروه ژئومورفولوژی دانشکده برنامه ریزی و علوم محیطی دانشگاه تبریز

3 دانشگاه تبریز

4 گروه ژئومورفولوژی، دانشکده برنامه ریزی و علوم محیطی، دانشگاه تبریز

چکیده

هدف از این تحقیق بررسی و تحلیل نقش شاخص‌های هیدروژئومورفیک در حساسیت سیل‌خیزی این حوضه می‌باشد. جهت نیل به این هدف ابتدا منطقه مورد مطالعه با استفاده از مدل رقومی ارتفاعی (DEM) با قدرت تفکیک مکانی 5/12 متر به 15 زیر حوضه تقسیم شده است. در مرحله بعد با استفاده از قوانین ژئومورفولوژیکی هورتن، شوم و استرالر خصوصیات ژئومورفولوژیکی هر یک از زیر حوضه‌ها از سه جنبه خصوصیات شبکه زهکشی (شامل رتبه آبراهه، تعداد آبراهه، طول آبراهه، تناوب آبراهه، نسبت انشعاب، طول جریان در روی زمین، تراکم زهکشی، بافت زهکشی، نسبت بافت، شماره نفوذ، ثابت نگه داشت کانال و ضریب رو)، خصوصیات شکلی (شامل مساحت، ضریب فشردگی، نسبت مدور بودن، نسبت کشیدگی، ضریب شکل و شاخص شکل) و خصوصیات برجستگی (شامل برجستگی، نسبت برجستگی، عدد سختی یا زبری و نسبت شیب) در محیط نرم‌افزار ArcGIS تهیه شدند. جهت تعیین وزن پارامترها از مدل تحلیل تصمیم‌گیری چند معیاره SWARA استفاده شد. نتایج وزن دهی پارامترها نشان داد که پارامترهای هیدروژئومورفیکی بافت زهکشی، نسبت بافت و تراکم زهکشی با مقادیر 273/0، 273/0 و 156/0 بیشترین وزن و تأثیر را در سیل‌خیزی منطقه مورد مطالعه دارند. به منظور اولویت‌بندی 15 زیر حوضه الندچای از مدل تصمیم‌گیری WASPAS استفاده شد. نتایج نشان داد که زیر حوضه‌های 1، 3 و 2 به ترتیب با ضرایب 907778/0، 858988/0 و 818645/0 از حساسیت سیل‌خیزی بیشتری برخوردار هستند. در مقابل زیر حوضه‌های 6 و 13 با ضرایب 250252/0 و 374716/0 کمترین مقادیر را داشته‌اند که نشان‌دهنده حساسیت بسیار پایین این زیر حوضه‌ها به سیل‌خیزی است.

کلیدواژه‌ها

عنوان مقاله [English]

Flood Analysis of Subbasins Using WASPAS Model (Case Study: Aland Chai Basin, Northwest of Iran)

نویسندگان [English]

  • Mohammad Hossein Rezaei Moghaddam 1
  • asadollah hejazi 2
  • Khalil Valizadeh kamran 3
  • Tohid Rahimpour 4

1 Dept of Geomorphology, University of Tabriz

2 Department of Geomorphology, Faculty of Planning and Environmental Sciences, Tabriz University

3 Dept of GIS&RS

4 Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz

چکیده [English]

1- Introduction
Floods are one of the major natural hazards that annually cause extensive damage worldwide. There are numerous floods in the northwest of the country with the beginning of spring and the start of spring rains, which in most cases results in heavy damages. Aland chai catchment suffers from destructive floods every year since the beginning of spring. The purpose of this study was to examine and analyze the role of hydrogeomorphic indices in flood sensitivity in this basin. Hydrogeomorphic parameters of sub-basins were studied from three aspects of drainage network characteristics (including order of stream, number of streams, length of streams, frequency of stream, bifurcation ratio, length of overland flow, drainage density, drainage texture, texture ratio, infiltration number, constant of channel maintenance, and Rho coefficient), shape characteristics (Including basin area, compactness coefficient, circulatory ratio, elongation ratio, form factor, and shape factor) and relief properties (relief, relief ratio, ruggedness number, and gradient).
2- Methodology
With an area of 1,147.30 km2, Aland Chai basin is located in the Northwest of Iran and in the Western Azerbaijan province. This basin is located between 38°- 30¢-14² and 38°- 48¢-22² N and between 44°- 15¢- 13² and 45°- 01¢-02² E. The minimum elevation of the area is 1093 meters and the maximum elevation is 3638 meters. This basin is one of the sub-basins of the Aras basin, which flows into the Aras River after joining the grand Qotour River. SWARA multi-criteria decision analysis model was used to weight the parameters. The Step-wise weight assessment ratio analysis (SWARA) model was developed by Keršuliene et al (2010). WASPAS multi-criteria decision-making model was used to prioritize sub-basins in terms of flood sensitivity. The weighted aggregated

 

sum product assessment (WASPAS) method was proposed by Zavadskas et al in 2012. The WASPAS method consists of two aggregated parts, namely (1) The weighted sum model (WSM) and, (2) The weighted product model (WPM).
3- Results and Discussion
Hydrogeomorphic analysis is significantly involved in the analysis of hydrological behavior of the basins. In the present study, 22 hydrogeomorphic parameters were analyzed from three aspects of drainage network characteristics, shape parameters and relief properties with the purpose of examining the effect of these parameters on the flood sensitivity of the Aland Chai basin. In the first step, the study area was divided into 15 sub-basins based on topographic and drainage characteristics using a digital elevation model (DEM) with a 12.5m spatial resolution. In the next step, the information of each sub-basin was provided based on 22 hydrogeomorphic parameters using the geomorphological laws of Horton, Schumm, and Strahler in ArcGIS software. According to the comparison among 22 parameters using the SWARA method, drainage texture, texture ratio, and drainage density (weighted as 0.273, 0.273 and 0.156) had the highest impacts on the occurrence of floods in study area respectively. On the contrary, Rho coefficient, constant of channel maintenance, infiltration number, and length of overland flow exhibited the lowest weights respectively.
4-Conclusion
The purpose of the current study was to examine and evaluate the role of hydrogeomorphic indices in flood sensitivity of Aland Chai basin, for which SWARA and WASPAS multi-criteria decision-making models were employed. The results of prioritization of sub-basins using WASPAS model indicated that sub-basin 1 with a coefficient of 0.907, sub-basin 3 with a coefficient of 0.858 and sub-basin 2 with a coefficient of 0.818 had respectively the highest sensitivity to flooding. The results also revealed that sub-basins 4, 7, 11 and 15 in are placed in the high level category, sub-basins 8 and 9 are categorized in moderate-level category class, sub-basins 5, 10, 12 and 14 are classified in the low-level class and sub-basins 6 and 13 are situated in the very low level category in terms of flood sensitivity. The total area of sub-basins in the high and very high class of flood sensitivity is 656.72 km2, which comprises 57.24% of the total Aland Chai basin. Therefore, according to the findings of the study, which indicate that the study area has high flooding, it is necessary to adopt protective measures such as watershed planning and dam construction in highly sensitive sub-basins to prevent flooding and mitigate potential damages in cases of severe flooding.
Keywords: Flood, Hydrogeomorphic Indices, GIS, WASPAS Model, Aland Chai Basin

 
5- References
Keršuliene, V., Zavadskas, E. K., Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA), Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12.
Zavadskas, E.K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Electronics and electrical engineering, 122(6), 3-6. http://dx.doi.org/10.5755/j01.eee.122.6.1810

کلیدواژه‌ها [English]

  • Flood
  • Geomorphological Analysis
  • Prioritization
  • WASPAS
  • Aland Chai Basin
Abuzied, S., Yuan, M., Ibrahim, S., Kaiser, M., & Saleem, T. (2016). Geospatial risk assessment of flash floods in Nuweiba area, Egypt. Journal of Arid Environments, 133, 54-72. http://dx.doi.org/10.1016/j.jaridenv.2016.06.004
Aksoy, H., Kirca, V.S.O., Burgan, H.I., & Kellecioglu, D. (2016).
Hydrological and hydraulic models for determination of flood-prone and flood inundation areas. The 7th International Water Resources Management Conference of ICWRS, 373,137–141. DOI: 10.5194/piahs-373-137-2016
Altaf, S., Meraj, G., & Romshoo, A. A. (2014). Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environmental Monitoring and Assessment, 186(12), 8391-8412. https://doi.org/10.1007/s10661-014-4012-2
Amiri, M., Pourghasemi, H., & Arabameri, A. (2018). Prioritization of Flood Inundation sub-watersheds of Maharlo Watershed in Fars Province Using Morphometric Parameters and VIKOR Decision Making Model. Eco Hydrology, 5(3), 813-827.
Bisht, S., Chaudhry, S., Sharma, S., & Soni, S. (2018). Assessment of flash flood vulnerability zonation through Geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. Remote Sensing Applications: Society and Environmen, 12, 35-47. https://doi.org/10.1016/j.rsase.2018.09.001
Biswas, S., Sudhakar, S., & Desai, V. R. (2002). Remote sensing and geographic information system based approach for watershed conservation. Survey Engineering, 128, 108-124.
Forotan, S., Ildoromi, A., Nouri, H., & Safari Shad, M. (2019). Urban Sprawell and Landuse Change Effects on Surface Runoff Using NRCS-CN Method (Case Study: Asadabad City). Hydrogeomorphology, 5(20), 1-20.
Gardiner, V. (1990). Drainage basin morphometry; In: Geomorphological techniques (ed.) Goudie A. Unwin Hyman, London, 71–81.
Grohmann, C.H. (2004). Morphometric analysis in geographic information systems: Applications of free software GRASS and R Star. Computer and Geoscience, 30(10), 1055-1067.
Hadely, R.F., & Schumm, S.A. (1961). Sediment sources and drainage basin characteristics in upper Cheyenne River basin. United States Geological Survey water-supply paper, 1531-B. Washington, DC: US Government Printing Office, 137–196.
Halabian, A.H., & Asgari, sh. (2017). Flood Hazard Intensity Zoning in Myshkhas Watershed Using Factor- Cluster Analysis. Hydrogeomorphology, 3(12), 153-177.
Horton, R.E. (1945). Erosional development of streams and theirdrainage basins: Hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 56(3), 275–370.
Hu, H. (2016). Rainstorm flash flood risk assessment using genetic programming: A case study of risk zoning in Beijing. Nat. Hazards, 83(1), 485–500. https://doi.org/10.1007/s11069-016-2325-x
Khalaj, M. (2020). Seismic Hazard in Babolrud and Talar Basins based on Morphometric Indices, Geography and Environmental Hazards, 33, 1-16.
Kumar Rai, P., Narayan Mishra, V., & Mohan, K. (2017). A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications: Society and Environment, 7: 9-20. http://dx.doi.org/10.1016/j.rsase.2017.05.001
 
Kundzewicz, Z.W., Pińskwar, I., & Brakenridge, G.R. (2013). Large floods in Europe, 1985–2009. Hydrological Sciences Journal, 58 (1), 1–7. https://doi.org/10.1080/02626667.2012.745082
Mahmood, Sh., & Rahman, A. (2019). Flash flood susceptibility modelling using geomorphometric approach in the Ushairy Basin, eastern Hindu Kush. J. Earth Syst. Sci,128(97), 1-14. https://doi.org/10.1007/s12040-019-1111-z
Mesa, L.M. (2006). Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina), Environ. Geol, 50 (8), 1235–1242.
Miller, V.C. (1953). A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virgina and Tennessee. Technical Report (3), Dept. of Geol. New York: Columbia University, 389–402.
Patton, P.C, & Baker, V.R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour Res. 12, 941–952.
Prasad, R.N., & Pani, P. (2017). Geo-hydrological analysis and sub watershed prioritization for flash flood risk using weighted sum model and Snyder’s synthetic unit hydrograph. Modeling Earth Systems and Environment, 3(4), 1491–1502. https://doi.org/10.1007/s40808-017-0354-4.
Ramani Sujatha, E., Selvakumar, R., Rajasimman, U.A.B., Victor, R.G. (2015). Morphometric analysis of sub-watershed in parts of Western Ghats, South India using ASTER DEM, Geomatics, Natural Hazards and Risk, 6, 326-341.
Schumm, S.A (1997).  Drainage density: problems of prediction'. In: Stoddart, D.R. (Ed.), Process and Form in Geomorphology. Routledge, London, pp. 15- 45.
Schumm, S.A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646. http://dx.doi.org/10.1130/0016- 7606(1956)67[597:EODSAS]2.0.CO;2
Shulits, S. (1968). Quantitative formulation of stream and watershed morphology. Bulletin of the International Association of Scientific Hydrology, 3, 201–207.
Singh, N., & Singh, K.K. (2017). Geomorphological analysis and prioritization of sub- watersheds using Snyder’s synthetic unit hydrograph method. Applied Water Science, 7(1), 275–283. https://doi.org/10.1007/s13201-014-0243-1
Strahler, A.N. (1964). Quantitative geomorphology of drainage basin and channel networks. Handbook of applied hydrology.
Sujatha, E.R., Selvakumar, R., Rajasimman, U.A.B., & Victor, R. (2015). Morphometric analysis of sub-watershed in parts of Western Ghats, South India using ASTER DEM. Geomatics, Natural Hazards and Risk, 6(4), 326-341. https://doi.org/10.1080/19475705.2013.845114
Suresh, M., Sudhakar, S., Tiwari, K. N., & Chawdary, V. M. (2005). Prioritization of watershed using morphometric parameters and assessment of surface water potential using RS. Journal of the Indian Society of Remote Sensing, 32, 111.
Verstappen, H. (1983). The applied geomorphology. Enschede (The Netherlands). International Institute for Aerial Survey and Earth Science (ITC).
Zavadskas, E.K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Electronics and electrical engineering, 122(6), 3-6. http://dx.doi.org/10.5755/j01.eee.122.6.1810.