نوع مقاله : پژوهشی

نویسندگان

1 دانشکده علوم زمین دانشگاه دامغان

2 دانشکده علوم زمین، دانشگاه دامغان، دامغان، ایران

3 مدیریت جهاد کشاورزی دامغان، دامغان، ایران

چکیده

مسأله­ی آب یکی از اساسی­ترین مسایل امروزی جوامع انسانی است، اما در سایه­ی خشکسالی، به یک چالش جدی برای تصمیم­سازان جامعه تبدیل شده و تمامی ابعاد توسعه­ی جامعه را متاثر می­کند. در استان لرستان، در سال­های اخیر تعداد قابل توجهی از رودخانه­ها و چشمه­ها خشکیده است که اغلب، آن را به خشکسالی جوی (کمبود بارش) نسبت می­دهند. در این پژوهش با استفاده از نمایه­ی درصد نرمال بارش به ارزیابی این نوع خشکسالی در بازه­ی زمانی 1988 تا 2017 پرداخته شد. محاسبه درصد نرمال بارش نشان می­دهد که فقط درصد کمی (بین 30 تا 6/6 درصد) از دوره­ی سی­ساله­ی مورد بررسی دارای خشکسالی، آن­هم از نوع ضعیف (کمی خشک) بوده­اند. این بدان معنی است که خشکسالی به صورت قابل توجه در این دوره رخ نداده است. بنابراین بروز عوارض خشکسالی متوسط تا شدید که به صورت خشک شدن بسیاری از چشمه­ها، رودخانه­ها، و آبشارها نمایان شده است، نمی­تواند به­تنهایی ناشی از خشکسالی جوی باشد. این مساله می­تواند ریشه در برداشت بی­رویه­ی آب­های زیرزمینی داشته باشد که موجب افت ناگهانی و شدید سطح سفره و بروز علایم خشکسالی شدید شده است. واکاوی دوره­ی بازگشت خشکسالی نیز تایید می­کند ­که خشکسالی شدید در اغلب ایستگاه­ها دارای دوره­ی بازگشت بسیار طولانی و غیرقابل محاسبه است. خشکسالی متوسط نیز دوره­ی بازگشتی بیشتر از هزار سال دارد. تنها خشکسالی ضعیف دارای دوره­ی بازگشت 100 تا 200 سال است، اما این نوع خشکسالی نمی­تواند مسئول بروز عوارض خشکسالی شدید باشد، پس باید به دنبال عوامل انسانی مانند مدیریت منابع بود که مرتبط با خشکسالی اجتماعی-اقتصادی است. بر پایه­ی میزان داده­های بازسازی شده، ضریب اطمینان نتایج به­دست آمده برای ایستگاه­های خرم­آباد، الیگودرز و بروجرد 100%، برای ازنا، دورود و نورآباد 7/56%، پلدختر 4/63 % و برای کوهدشت و الشتر 7/66 % می­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Drought evaluation of a thirty-year period (1988 – 2017) in Lurestan Province using the Percent of Normal precipitation Index (PNI)

نویسندگان [English]

  • Amin Navidtalab 1
  • Ghasem Askari 2
  • Farahnaz Ahmadpour 2
  • Maryam Tahmasebi 3

1 School of Earth Sciences, Damghan University, Damghan, Iran

2 School of Earth Sciences, Damghan University, Damghan

3 Organization of Agriculture Jihad, Damghan, Iran

چکیده [English]

1-Introduction
One of the most important issues, facing the human society and environment, is water resources management. Regarding the drought, this issue turns to a serious challenge for decision makers, and affect the the people more than other natural hazards (Hagman, 1984). Normally, drought occurs in all climatic conditions (Dai, 2010). Through the current research, we try to investigate drought in Lurestan Province using Percent of Normal precipitation Index (PNI) which evaluates meteorological drought (Hayes, 2006; Zargar et al., 2011). Lurestan Province located in the western Iran, and has an area of about 29,308 Km2. Geographically, it sits between northern latitudes of 32֯ 38' 39" and 34֯ 24' 17" and between eastern longitudes of 46֯ 52' 14" and 50֯ 01' 59". Climatic differences has led to the emergence of three conspicuous climates: (1) mountainous cold climate in the northern and eastern parts, (2) temperate climate in central parts, and (3) warm climate in the south and southeastern parts.
2-Methodology
The meteorological drought intensity is evaluated through different methods including Standardized Precipitation Index (SPI), Percent of Normal Index (PNI), Deciles Index (DI), Effective Drought Index (EDI), China-Z (CZI), Modified China-Z (MCZI), Rainfall Anomaly Index (RAI), Z-Score Index (ZSI), Palmer Drought Severity Index (PDSI), (Willeke et al., 1994; Byun and Wilhite, 1999; Hayes, 2006; Salehnia et al., 2017). To evaluate drought, a period of thirty-year (1988 – 2017) data were adopted from nine synoptic weather stations including Khorramabad, Borujerd, Aligudarz, Aleshtar, Noorabad, Poldokhtar, Kohdasht, Azna, and Dorud. For calculating PNI, the following equation has been applied (equ.1):
 

 

PNI=P/P ̅ *100                                                (1)
where PNI stands for Percent of Normal precipitation Index, P for annual precipitation (mm), P ̅ for average precipitation of the thirty-year period. PNI (%) ≤110 represents Moderately to Extremely wet climate, 80-110 Normal, 55-80 Moderately dry, 40-55 Very dry, and 40≥ Extremely dry (Morid et al., 2006).
3-Resultsand Discussion
Considering 67 years recorded data for Khorramabad, 32 years for Aligudarz, and 30 years for borujerd, these stations are considered as milestones to reconstruct the data for stations with lack of data for the thirty-year period of study. For other stations, 13 to 17 years of data were reconstructed (Table 1). To find the best reference station for incomplete stations, geographic and climatic resemblance with the stations of complete thirty-year period data was considered. Temperature, precipitation, De Martonne aridity index, and climatic classification by Iran Meteorological Organization (IMO) were evaluated for all stations to find similarities.
Table (1): Reconstructed years of data for each station based on geographic and climatic resemblance with the stations of complete thirty-year period data.




 

De Martonne classificat-ion


IMO classification


Avail-able years


Reconstr-ucted years


Station




21.3


Semi-arid


Moderately wet, warm summer, moderately cold winter


67


0


Khorramabad




17.8


Semi-arid


Moderately wet, temperate summer, very cold winter


17


13


Azna




18.4


Semi-arid


Moderately wet, temperate summer, very cold winter


32


0


Aligudarz




7.55


Dry or Arid


Moderately wet, warm summer, cold winter


17


13


Dorud




18.4


Semi-arid


Moderately wet, warm summer, moderately cold winter


30


0


Borujerd




18.6


Semi-arid


Moderately wet, temperate summer, cold winter


20


10


Aleshtar




19.5


Semi-arid


Moderately wet, temperate summer, very cold winter


17


13


Noorabad




14.8


Semi-arid to Arid


Moderately wet, warm summer, cold winter


20


10


Kuhdasht




10.9


Dry or Arid


Moderately wet, very warm summer, moderately cold winter


19


11


Poldokhtar





 




4-Conclusion
None of stations show Extreme drought. Severe drought is observed in 6 stations with little percentages (3.3-6.6%). Weak droughts has been recorded between 6.6 to 30% in all stations (Table 2). Therefore, dried 80% of springs and rivers in Lurestan could not be solely resulted from meteorological drought in Lurestan. The role of water management in creating this crisis should not be neglected.
Table (2): Percentage of different intensities of drought in the studied stations





Moderately to Extremely dry


Normal


Moderately dry


Very dry


Extermely dry


Station




23.3


43.3


30


3.3


0


Khorramabad




30


40


23


6.6


0


Azna




26.6


43.3


23.3


6.6


0


Aligudarz




20


66.3


6.6


6.6


0


Dorud




30


50


20


0


0


Borujerd




36.6


46.6


16.6


0


0


Aleshtar




36.6


36.6


26.6


0


0


Noorabad




33.3


40


20


6.6


0


Kuhdasht




26.6


50


16.6


6.6


0


Poldokhtar





 
Keywords: Meteorological drought, Drought intensity, drought prediction, Lurestan
5- References
Byun, H. R., Wilhite, D. A. 1999. Objective quantification of drought severity and duration. Journal of Climate, 12(9): 2747–2756.
Dai, A. (2011), Drought under global warming: a review. WIREs Clim Change, 2: 45-65. doi:10.1002/wcc.81
De Martonne, E. (1926). Aerisme, et índices d’aridite. Comptesrendus de L’Academie des Sciences, 182: 1395– 1398.
Hagman, G. (1984). Prevention Better than Cure: Report on Human and Natural Disasters in the Third World, Stockholm: Swedish Red Cross.
Hayes MJ. Drought indices. What Is Drought? Lincoln, Nebraska: National Drought Mitigation Center, 2006. Available at: http://drought.unl.edu/whatis/indices.htm.

 
Salehnia, N., Alizadeh, A., Sanaeinejad, H., Bannayan, M., Zarrin, A., & Hoogenboom, G. (2017). Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data. Journal of Arid Land, 9(6): 797-809.
Willeke, G., Hosking, J. R. M., Wallis, J. R. (1994). The national drought atlas. In: Institute for Water Resources Report 94-NDS-4. U.S Army Corp of Engineers, CD-ROM. Norfolk, VA.
Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19(NA): 333-349.
 

کلیدواژه‌ها [English]

  • meteorological drought
  • return period
  • socio-economic drought
  • Lurestan
 
Adib, A., Gorgizadeh, A. (2017).Evaluation and monitoring of drought using of drought indexes; case study the Dez watershed. Journal of irrigation & water engineering 6, (26):173-185.
Aghanabati, A. (2006). Geology of Iran, Tehran: Geological Survey of Iran.
Alizadeh, A. (1995). Principles of Applied Hydrology, Mashhad: Astan Quds Razavi.
Adnan, S., Ullah, K., Shuanglin, L., Gao, S., Khan, A. H., Mahmood, R. (2018). Comparison of various drought indices to monitor drought status in Pakistan. Climate Dynamics 51: 1885–1899. https://doi.org/10.1007/s00382-017-3987-0
Alwan, I., Ziboon, A.R.T. and Khalaf, A.G. (2018). Comparison of nine meteorological drought indices over middle Euphrates region during period from 1988 to 2017. International Journal of Engineering & Technology, 7(4.20): 602-607.
Arnon, I. (1992). Agriculture in dry lands principles and practice. Developments in agricultural and managed-forest ecology: 26, 3-917.
Byun H R, Wilhite D A. (1999). Objective quantification of drought severity and duration. Journal of Climate, 12(9): 2747–2756.
Dai, A. (2011). Drought under global warming: a review. WIREs Climate Change, 2: 45-65. doi:10.1002/wcc.81
De Martonne, E. (1926). Aerisme, et índices d’aridite. Comptesrendus de L’Academie des Sciences, 182: 1395-1398.
Gao, G., Zhao, L., Zhang, J., Zhou, D., & Huang, J. (2008). A segmentation algorithm for SAR images based on the anisotropic heat diffusion equation. Pattern Recognition, 41(10): 3035-3043.
Hagman, G. (1984). Prevention Better than Cure: Report on Human and Natural Disasters in the Third World, Stockholm: Swedish Red Cross.
Hayes, M.J. (2006). Drought indices. What Is Drought? Lincoln, Nebraska: National Drought Mitigation Center. Available at: http://drought.unl.edu/whatis/indices.htm.
Hayes, M.J., Alvord, C., Lowrey, J. (2007). Drought indices. Feature Article From Intermountain West Climate Summary. Western Water Assessment. Available at: the National Drought Mitigation Center (NDMC) webpage, http://drought.unl.edu/index.htm.
Madani, K., AghaKouchak, A., Mirchi, A. (2016). Iran’s Socio-economic Drought: Challenges of a Water-Bankrupt Nation, Iranian Studies, 49 (6): 997-1016
Morid, S, Smakhtin V, Moghaddasi M. (2006). Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology, 26 (7): 971–985.
Navidtalab, A., Maghami Moghim, G. (2020). Climate, lithology, and tectonics interaction in shaping a hazardous salt karst: A case from the middle–late Miocene (?) evaporite succession of NE Iran. Geomorphology 356: 107067. https://doi.org/10.1016/j.geomorph.2020.107067
Parvaneh, B., Shiravand. H., Dargahian, F. (2015). Prediction of drought situation in Lorestan province during the period 2030-2011 using the micro-scale of the output of 4 models of general atmospheric circulation. Territorial Geography 12 (45): 1-13.
Palmer, W. (1965). "Meteorological Drought". Research paper no.45, U.S. Department of Commerce Weather Bureau, February (58 pgs). Available online by the NOAA National Climatic Data Center at http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.
Rahimi, D., Movahedi, S., Barqi, H. (2010). Investigation of drought intensity with normal precipitation index (case study of Sistan and Baluchestan province). Geography and Environmental Planning. Journal of Humanities Research 20 (4): 43-56.
Ramasht, M. H. (1995). Application of Geomorphology in Planning, University of Isfahan.
Sari Saraf, B., Mahmudi, S., Zangane, S. (2015). Monitoring and Predicting the Wet and Drought Periods in Tabriz Using CLIMGEN Models and SPI, Hydrogeomorphology, 1(2): 61-78.
Said, A. A., Cetin, M., Yurtal, R. (2019). Drought Assessment and Monitoring Using Some Drought Indicators in the Semi-Arid Puntland State of Somalia. Fresenius Environmental Bulletin (FEB 28 (11A): 8765-8772.
Salehnia, N., Alizadeh, A., Sanaeinejad, H., Bannayan, M., Zarrin, A., & Hoogenboom, G. (2017). Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data. Journal of Arid Land, 9 (6): 797-809.
Shahabfar, A., Eitzinger, J. (2013). Spatio-temporal analysis of droughts in semi-arid regions by using meteorological drought indices. Atmosphere, 4 (2): 94–112.
Sok K., Visessri S., Heng S. (2019). A Comparative Assessment of Meteorological Drought Indices for the Baribo Basin (Cambodia). In: Chaminé H., Barbieri M., Kisi O., Chen M., Merkel B. (eds) Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources. CAJG 2018. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. https://doi.org/10.1007/978-3-030-01572-5_2
Tadić, L., Dadić, T., Bosak, M. (2015). Comparison of different drought assessment methods in continental Croatia. GRAĐEVINAR 67 (1): 11-22. DOI: http://dx.doi.org/10.14256/JCE.1088.2014
Trewartha, G.T. (1954). An Introduction to Climate. McGraw-Hill Book Company, INC., New York.
Vali, A., Mehrabi, A. (2019). The Frequency Analysis of the Hydrological Drought in Doroodzan Dam Basin Based on Stream Flow Drought Index. Hydrogeomorphology, 5(19): 143-125.
Wilhite, Donald A. (2000). "Drought as a Natural Hazard: Concepts and Definitions". Drought Mitigation Center Faculty Publications. 69.
Willeke G, Hosking J R M, Wallis J R. (1994). The national drought atlas. In: Institute for Water Resources Report 94-NDS-4. U.S Army Corp of Engineers, CD-ROM. Norfolk, VA.
Zargar, A., Sadiq, R., Naser, B., Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19(NA): 333-349.