نوع مقاله : پژوهشی

نویسندگان

1 استادیار گروه آموزشی جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی

2 دانش‌آموخته کارشناسی ارشد سنجش از دور و GIS، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی

3 دانشیار گروه مرتع و آبخیزداری و عضو پژوهشکده مدیریت آب، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی

چکیده

هدف از این مطالعه مدل‌سازی رواناب ماهانه با استفاده از مدل Temez با در نظر گرفتن تاثیرات سناریوهای مختلف تغییر کاربری اراضی بر سیلاب در حوزه آبریز کوزه‌تپراقی استان اردبیل است. در این مطالعه از تصویر ماهواره‌ای لندست 8 سنجنده OLI/TIRS، مدل رقومی ارتفاعی (DEM)، داده‌های بارش، دما و دبی روزانه دوره 10 ساله (1381-1391) استفاده شد. طبقه‌بندی کاربری اراضی با استفاده از روش نظارت‌شده ماشین بردار پشتیبان انجام شد و ضریب کاپای 95/0 و صحت کلی 5/97 درصد بدست آمد. علاوه براین، باتوجه به وضعیت موجود کاربری‌های اراضی، مجاورت کاربری‌های اراضی و درصد شیب کاربری‌های اراضی در حوزه مورد مطالعه 10 سناریوی تغییرکاربری اراضی در حوضه ی مورد مطالعه تعریف و تدوین شد. هم‌چنین، نتایج حاصل از مدل‌سازی با استفاده از داده‌های دبی مشاهداتی ایستگاه هیدرومتری کوزه‌تپراقی واسنجی و اعتبارسنجی شد. مقدار ضریب تبیین برای مراحل واسنجی و اعتبارسنجی به‌ترتیب برابر با 77/0 و 65/0 بود. نتایج نشان‌دهنده این بود که اگر تغییرات کاربری‌های اراضی در حوضه یمورد مطالعه در آینده براساس شرایط تدوین‌شده در سناریوهای احیاء کاربری اراضی3 (احداث باغ در اراضی کشاورزی آبی)، 4 (احداث باغ در اراضی کشاورزی آبی و احیا مراتع شخم‌خورده) و5 (احداث باغ در مراتع شخم‌خورده و کم‌بازده) باشد، حجم رواناب به‌میزان 4/3، 3/3 و 1/4 درصد کاهش خواهد یافت. هم‌چنین، اگر تغییرات کاربری اراضی براساس شرایط تدوین‌شده در سناریوهای تخریب کاربری اراضی در سناریوی 9 (تبدیل مراتع پرشیب به زراعت دیم) و 10 (تبدیل مراتع کم شیب به اراضی بدون پوشش) باشد، میزان رواناب ماهانه به‌میزان 24/15 و 5/4 درصد افزایش خواهد یافت.

کلیدواژه‌ها

عنوان مقاله [English]

Predicting the effects of land use changes on the monthly flow using hydrological model and Remote Sensing in the Kouzetopraghi watershed, Ardabil

نویسندگان [English]

  • Hassan Khavarian 1
  • Maryam Aghaie 2
  • Raoof Mostafazadeh 3

1 Assistant Professor, Department of Literature and Humanities, Faculty of Natural Geography, University of Mohaghegh Ardabili, Ardabil, Iran

2 M.Sc. Graduated in Remote Sensing and GIS, Department of Literature and Humanities, Faculty of Natural Geography, Mohaghegh Ardabili University, Ardabil, Iran

3 Associate Professor, Department of Natural Resources and member of Water management Institute, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili

چکیده [English]

1-Introduction
Land use change has significant effects on hydrological and ecological processes at different temporal and spatial scales. Many hydrological models have been developed based on the characteristics of the basin, available data and purpose of the study. To predict the characteristics of river flow, we need to develop the rainfall-runoff model to predict the flow for a long period of time. This study has been carried out for the modeling of monthly runoff using Temez model and then the effects of the different land use change scenarios on runoff components have been assessed.
2-Methodology
In this study the OLI-Landsat 8 satellite imageries, a digital elevation model (DEM) as well as meteorological and hydrological data were used for the modelling purpose. The land use classification was carried out using a support vector machine (SVM) method to create a map with 6 land use classes: dry farming, forest land, water body, pasture, built-up and irrigated agriculture. Then, the 10 management scenarios have been developed based on the field observations and taking into account the field characteristics, changes trend in the land use pattern, and the suitability of the study area for different land uses. In order to simulate the runoff, the Temez monthly hydrological model was employed. A 10-year (2002 to 2012) daily precipitation, temperature and runoff data were aggregated to monthly time scales. The calibration and validation steps were performed based on observed data. For calibration of the model, the first 6 years data and for model validation 4 years data were used. The parameters of the Temez model were calibrated based on the values obtained from the literature. First, the appropriate coefficients were found for each land use in the watershed and then the area of land uses in all scenarios were computed. Finally, the weighted average was calculated for the coefficients and appointment in Temez model. 

 

3-Results and Discussion
The accuracy of the land use map was quite high. A Kappa coefficient of 0.95 and an overall accuracy of 0.975 was obtained. The accuracy of the modeled runoff was presented using R2 coefficient, which was 0.77 and 0.65, for calibration and validation stages, respectively. The results of considering the land use change scenarios on the monthly runoff showed that land use reclamation scenarios of 3, 4 and 5 had a decreasing effect on the runoff by 3.4, 3.3, and 4.1 percent, respectively. Also the land use scenarios of degradation condition, 9 and 10 scenarios, caused an increasing effect on the monthly runoff to 15.24 and 4.5 percent, respectively.
4- Conclusion
The monthly hydrological Temez model showed relatively good performance in estimating monthly runoff values based on the data used. The results can be considered in predicting the development and degradation conditions in the study area. 
Keywords: Land Reclamation, Land Degradation, Kouzehtopraghi Watershed, Land use Change Scenario, Monthly Runoff Feature, Temez Model
5-References
Arceo, M.G.A.S., Cruz, R.V.O., TiburanJr, C.L., & Balatibat, J.B (2018). Modelling the hydrologic responses to land cover and climate changes of selected watershed in the Philippines using soil and water assessment tool (SWAT) model, DLSU Business & Economics Review, 28, 84-101.
Andrade Abe, C., Lucialobo, F.O., Berhan Dibike, Y., Farias Costa, M.P.D., Dos Santos, V., & L.M Novo, E.M (2019). Modelling the effects of historical and future land cover changes on the hydrology of an Amazonian basin, Water, 10(932), 1-19.
Feki, M. R., G. Gepple, A. Mille, G. Mancini, M (2018), Impact of infiltration process modelling on soil moisture content simulations for irrigation management, Water, 10(850), 1-20.
Garg, V., Nikam, B.R., Thakur, P.K., Aggarwal, S.P., Gupta, P.K., & Srivastav, S.K. (2019). Human-induced land use land cover change and its impact on hydrology, HydroResearch, 1, 48-56.
Gumindoga, W., Rwasoka, D.T., Ncube, N., Kaseke, E., & Dube, T (2018). Effect of land cover/land-use changes on water availability in around Ruti dam in Nyazvidzi catchment, Zimbabwe, Water, 44(1), 136-145.

Hyandye, C.B. Worqul, A., Martz, L.W., & Muzuka, A.N.N. (2018). The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies, Environmental System Research, 7(7), 1-24.
Jain, S.K. (1993). Calibration of conceptual models for rainfall-runoff simulation, Hydrological Sciences Journal, 38(5), 431-441.
Onate-Valdivieso, F., Bosque-Sendra, J., Sastre-Merline, A., & Ponce, V.M. (2016). Calibration, validation and evaluation of a lumped hydrologic model in a montain area in Southern Ecuador, Agrociencia, 50(8), 945-963.
Temez, J.R (1977(. Modelo matematico de transformacion. Precipitacion. Aportacion. Asociacion de Investigacion Industrial Electrica ASINEL, 1-10.
 

کلیدواژه‌ها [English]

  • Land reclamation
  • Land degradation
  • Monthly runoff components
  • Land use change scenario
  • Temez model
AhmadiSani, N., Solaimani, K., Razaghnia, L., Mostafazadeh, R., & Zandi, J. (2018). Assessing the efficiency of Arc-CN Runoff tool in runoff estimation and its comparison in 1996 and 2011 years in Haraz Watershed, Mazandaran Province. Hydrogeomorphology, 16, 139-158. (In Persian)
Alaie, N., Mostafazadeh, R., Esmali-Ouri, A., Sharari, M., & Hazbavi, Z (2020). Assessment and Comparison of Landscape Connectivity in KoozehTopraghi Watershed, Ardabil Province, Iranian Journal of Applied Ecology, 8(4), 19-34. (In Persian)
Rezaiemoghadam, M., Andariani, H., Almaspour, S., Valizadehkamran, Kh., & Mokhtariasl, A. (2017). Investigation effects of landuse and land cover changes on flooding and runoff discharge (Case Study: Alavyan Dam Basin). Hydrogeomorphology, 1(1), 41-57. (In Persian)
Alvarez, J. Sánchez, A. Quintas, L. (2005). SIMPA, a GRASS Based Tool for Hydrological Studies, Geo-informatics, 1(1), 13-20.
Andrade Abe, C., Lucialobo, F.O., Berhan Dibike, Y., Farias Costa, M.P.D., Dos Santos, V., & L.M Novo, E.M. (2019). Modelling the effects of historical and future land cover changes on the hydrology of an Amazonian basin, Water, 10(932), 1-19.
Apostolidis-afentoulis, V., & Lioufi, K. (2015). SVM classification with Linear and RBF kernels, 1-7p. DOI: 10.13140/RG
Arceo, M.G.A.S., Cruz, R.V.O., TiburanJr, C.L., & Balatibat, J.B. (2018). Modelling the hydrologic responses to land cover and climate changes of selected watershed in the Philippines using soil and water assessment tool (SWAT) model, DLSU Business & Economics Review, 28, 84-101.
ASCE & Water Pollution Control Federation. (1969). Design and Construction of Sanitary Storm Sewers. ASCE Manual and Reports on Engineering Practice no. 37 and WPCF Manual of Practice No. 9.
Mourad, A.,  El Messari, J.S., Ismail, H., Abdelmounim, B., Gabriel, M.N.J., Loubna, B., & Reda, A.M.M. (2019). Assessment of the SWAT model and the parameters affecting the flow simulation in the watershed of Oued Lao (Northern Morocco), Ecological Engineering, 20(4), 104-113.
Basarudin, Z. Adnan, N. A. Latif, A. R. A. Tahir, W., & Syafiqah, N. (2014), Event-based rainfall-runoff modelling of the Kelantan river basin, Earth and Environmental Science, 18, 1-7.
Chang, W., & Chen, X. (2018). Monthly rainfall-runoff modelling at watershed scale: A comparative study of data-driven and theory-driven approaches, Water, 10(1116), 1-27.
Feki, M.R.G., Gepple, A., Mille, G., & Mancini, M. (2018). Impact of infiltration process modelling on soil moisture content simulations for irrigation management, Water, 10(850), 1-20.
Garg, V., Nikam, B.R., Thakur, P.K., Aggarwal, S.P., Gupta, P.K., & Srivastav, S.K. (2019). Human-induced land use land cover change and its impact on hydrology, HydroResearch, 1, 48-56.
Gumindoga, W., Rwasoka, D.T., Ncube, N., Kaseke, E., & Dube, T. (2018). Effect of land cover/land-use changes on water availability in around Ruti dam in Nyazvidzi catchment, Zimbabwe, Water, 44(1), 136-145.
Hyandye, C.B., Worqul, A., Martz, L.W., & Muzuka, A.N.N. (2018). The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies, Environmental System Research, 7(7), 1-24.
Jain, S.K. (1993). Calibration of conceptual models for rainfall-runoff simulation, Hydrological Sciences Journal, 38(5), 431-441.
Joo, J., Kjeldsen, T., Kim, H.J., & Lee, H. (2013). A comparison of two event-based flood models (ReFH-rainfall-runoff model and HEC-HMS) at two Korean catchments, Bulki and Jeungpyeong, Civil Enineering, KSCE, 18(1), 1-15.
Kohnova, S., Roncak, P., Hlavcova, K., & Szolgay, J. (2019). Future impacts of land use and climate change on extreme runoff values in selected catchments of Slovakia, Meteorology Hydrology and Water Management, 7(1), 48-55.
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall-runoff modelling using long short-term memory (LSTM) networks, Hydrology and Earth System Science, 22, 6005-6022.
Largeron, C., Cloke, H.L., Veyhoef, A., Torre, A.M., & Mueller, A. (2018). Impact of the representation of the infiltration on the river flow during intense rainfall events in JULEs, Technical Memorandum, 821, 1-24.
Legates, D.R., & McCabe, G.J. (1999). Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35, 233-241.
Mishra, S., Saravanan, C., Dwivedi, V.K., & Shukla, J.P. (2018). Development of hydrolprocess framework for rainfall-runoff modeling in the river, Brahmaputra basin: Indian Journal of Geo-Marine Sciences (IJMS), 47(12), 2369-2381.
Mutreja, K.N. (1990). Applied Hydrology. New Delhi: Tata McGraw-Hill.
Morton, F.I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66 (1-4), 1-76.
Mostafazadeh, R., Sadoddin, A., Bahremand, A., & Sheikh, V.B, ZareGarizi, A. (2017). Scenario analysis of flood control structures using a multi-criteria decision making technique in Northeast Iran. Natural Hazards. 87: 1827–1846.
Onate-Valdivieso, F., Bosque-Sendra, J., Sastre-Merline, A., & Ponce, V.M. (2016). Calibration, validation and evaluation of a lumped hydrologic model in a montain area in Southern Ecuador, Agrociencia, 50(8), 945-963.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., & Loumagne, C. (2005). Which potential evapotranspiration input for a rainfall-runoff model? Part 2 - Towards a simple and efficient PE model for rainfall-runoff modelling. Journal of Hydrology 303(1-4), 290-306.
Pahwa, S., & Sinwar, D. (2015). Comparison of various kernels of Support Vector Machine, IJRASET, 3, 532-536.
Ping Xie, D.Y., Dong, X., Liu, J., Li, Y., Peng, T., Ma, H., Wang, K., & Xu, Sh. (2018). Improvement of the SWAT model for event-based flood simulation on a sub-daily timescale, Hydrology and Earth System Sciences, 22, 5001-5019.
Puno, R.C.C., Puno, G.R., & Talisay, B.A.M. (2019). Hydrologic response of watershed assessment to land cover and climate change using soil and water assessment tool models, Environmental Science and Management, 5(1), 71-82.
Rodgers, J.L., & Nicewander, W.A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59-66.
Sadoddin, A., Sheikh, V.B., Mostafazadeh, R., & Halili, M.GH. (2010). Analysis of Vegetation-based management scenarios using MCDM in the Ramian Watershed, Iran, International Journal of Plan Production (IJPP), 51-62
Samie, M., Ghazavi, R., Vali, A., & Pakparvar, M. (2019). Evaluation of the effect of land use change supervised classification satellite data, Global NEST Journal, 21(2), 245-252.
Santillan, J.R., Amora, A.M., Makinano-Santillan, M., Gingo, A.L., & Marqueso, J.T. (2019). Analyzing the impacts of land cover change to the hydrologic and hydraulic behaviors of the Philippines third largest river, Photogrammetry, Remote Sensing and Spatial Information Sciences, 3(1), 41-248.
Shang, X., Jiang, X., Jia, R., & Wei, Ch. (2019). Land use and climate change effects on surface runoff variations in the upper Heihe river basin, Water, 11(344), 1-20.
Supriya, P., & Krishnaveni, M. (2016). Comparing the performance of rainfall-runoff models for Chinnar and Anaivavi Oday sub-basins, Journal of Applied Hydrology, 10(4), 44-59.
Suryoputro, N., Widandi Soetopo, S., & Suhartano, E. (2017). Calibration of infiltration parameters on hydrological tank model using runoff coefficient of Rational Method, Green Construction and Engineering Education for Sustainable Future, (GCEE) 1887, 1-9.
Subramanya, K. (1991). Engineering Hydrology. New Delhi: Tata McGraw-Hill.
Tayyab, M., Zhou, J., Zeng, X., Chen, L., Ye, L. (2014). Optimal application of conceptual rainfall-runoff hydrological models in the Jinshajing river basin, China, Remote Sensing and GIS for Hydrology and Water Resources, 368, 277-232.
Temez, J.R. (1977(. Modelo matematico de transformacion. Precipitacion. Aportacion. Asociacion de Investigacion Industrial Electrica ASINEL, Madrid. 39 p.
Vieira, J., & Conceiçao Cunha, M.D. (2017). Closure to “Systemic Approach for the Capacity Expansion of Multisource Water-Supply Systems under Uncertainty” by João Vieira and Maria Cunha, Water Resources Planning and Management, 143(9), 1-38.
Winter, B., Schneeberger, K., Dung, N.V., Huttenlan, M., Achleither, S., Stotter, J., Merz, B., & Vorogushyn, S. (2019). A continuous modelling approach for design flood estimation sub-daily time-scale. Hydrological Science Journal, 64(5), 539-554.
Yadav, A., Twwari, H.L., & Galkate, R.V. (2019). Rainfall-runoff modeling using Mike11 Nam for Sher river basin model, Recent Technology and Engineering (IJRIE), 8(1), 844-852.