مدل‌سازی، تحلیل و پیش بینی پدیده ی خشکسالی در ایران

نوع مقاله : علمی

نویسندگان

1 عضو هیات علمی دانشگاه محقق اردبیلی

2 دانشجوی دکتری گروه جغرافیای طبیعی، اقلیم شناسی، دانشگاه محقق اردبیلی، ایران

3 دانشجوی دکتری گروه جغرافیای طبیعی، اقلیم شناسی، دانشگاه محقق اردبیلی ، ایران

چکیده

پدیده­ی خشکسالی مختص ناحیه­ ای خاص نبوده و مناطق مختلف جهان از آن متأثر می­باشد، یکی از این مناطق، ایران در جنوب غرب آسیا می‌باشد که در چند سال اخیر از این پدیده رنج می­برد. هدف پژوهش حاضر مدل‌سازی، تحلیل و پیش­بینی خشکسالی در ایران می‌باشد. برای این کار ابتدا پارامترهای اقلیمی: بارش، دما، ساعات آفتابی، حداقل رطوبت نسبی و سرعت باد در بازه­ی زمانی 29 ساله (2018- 1990) در 30 ایستگاه ایران مورد استفاده قرار گرفت. برای مدل­سازی، شاخص فازی T.I.B.I ابتدا چهار شاخص (SET, SPI, SEB, MCZI) با استفاده منطق فازی در نرم­افزار Matlab فازی‌سازی شدند و در نهایت برای پیش ­بینی از مدل شبکه ­ی عصبی مصنوعی تطبیقی Anfis بهره گرفته شد. یافته­ های پژوهش نشان داد شاخص فازی نوین T.I.B.I طبقات خشکسالی، چهار شاخص مذکور را با دقت بالا در خود منعکس کرد. از بین 5 پارامتر اقلیمی مورد استفاده در این پژوهش، پارامتر دما و بارش در نوسان شدت خشکسالی بیش‌ترین تأثیر را داشت. شدت خشکسالی براساس مدل‌سازی صورت گرفته در مقیاس 6 ماهه بیش­تر از 12 ماهه بود، بیش­ترین درصد رخداد خشکسالی در ایستگاه بندرعباس با مقدار (30/24) در مقیاس 12 ماهه و کم­ترین آن در ایستگاه شهرکرد با مقدار درصد فراوانی خشکسالی (36/0) درصد در مقیاس 6 ماهه اتفاق افـتاده است. پیش­بینی خشکسالی شـاخص فازی T.I.B.I بر اساس مـدل Anfis ایستگاه‌های بندرعباس، بوشهر و زاهدان به ترتیب با مقدار شاخص T.I.B.I (62/0،‌ 96/0 و 97/0) در نیمه­ جنوبی ایران بیش­تر در معرض خشکسالی قرار گرفتند. براساس نتایج کلی پژوهش در هر دو مقیاس 6 و 12 ماهه مناطق نیمه­ جنوبی ایران از شدت بیش­تر خشکسالی برخوردار شد که نیازمند مدیریت دقیق و کارآمد در مدیریت منایع آبی در این مناطق می‌باشد.

تازه های تحقیق

-

کلیدواژه‌ها


عنوان مقاله [English]

Modelling, Analysis, and Prediction of Drought Phenomenon in Iran

نویسندگان [English]

  • behrouz sobhani 1
  • Leyla Jafarzadehaliabad 2
  • Vahid Safarianzengir 3
1 Departement of geography
2 Ph.D. student, Dept. of physical geography, Climatology, University of Mohaghegh Ardabili,
3 3- Ph.D. student, Dept. of physical geography, Climatology, University of Mohaghegh Ardabili
چکیده [English]

1-Introduction                  
Drought is one of the most important natural disasters affecting agriculture and water resources, and its abundance is extremely high in arid and semi-arid regions (Shamsenya et al., 2008: 165). Drought is a natural phenomenon that has a complex process due to the interactions of various meteorological factors and occurs in all climatic conditions and in all regions of the planet (Samandianfard & Asadi, 2017). According to the domestic and foreign studies, many researchers have conducted research on drought monitoring and prediction, but the research that can show the drought phenomenon more accurately with the future vision is not takenhas not been conducted if both do not cover the issue adequately. According to the researchers, this study was conducted to model, monitor and predict drought with the new method in Iran in this study.
2-Methodology
In this study, drought modelling in Iran was carried out using climatic data of rainfall, temperature, sunshine, relative humidity and wind speed monthly (for 6 and 12 months scale) for the period of 29 years (1990-2018). At 30 stations using the new TIBI architecture model, a fuzzy set of four indicators (SET, SPI, SEB, and MCZI) valid in the World Meteorological Organization was used. For modelling the new TIBI index, the climatic data were first normalized, then four indices (SET,

 

 SPI, SEB, and MCZI) were calculated separately and the fuzzy modelling of the four indices was performed in the Matlab software and eventually to prioritize the drought-affected areas, the multivariate decision-making model, TOPSIS was used.
3-Results
In order to investigate the effect of drought fluctuations in drought conditions of stations, it is possible to determine the changes in the indicators (SET, SPI, SEB, and MCZI) in the TIBI index analysis. Considering the large number of stations studied, For better understanding, only the drought series diagrams were presented at Bojnourd station on two 6 and 12 month scales (Figures 7 and 8),, (in the mentioned figures, the red arrow shows the drought margin at a 6-month scale with a value of 0.44 and greater, and a value of 0.76 and greater within the 12-month scale. The analysis of these forms shows that at the 6-year and 12-month scale at Bojnourd station, the amount of evapotranspiration was similar in drought conditions, which decreased from April 1994 to February 1999, and after this month an increase was observed if the impact of rainfall on a 6-month scale is weaker than the 12-month scale. It means that from May 1993 to November 1997, an increasing trend followed by the same pattern, and the indicators (SET, SPI, SEB, and MCZI) affect the TIBI index and show some trends, indicating that the new TIBI fuzzy index reflects the four indicators well. The T.I.B.I index at the 6-month scale shows a sharper shape than the scale 12.Prioritization of the stations involved in drought in Iran was analyzed using the TOPSIS model. The results of the TOPSIS model implementation using the degree of importance of the criteria derived from the entropy method indicate that, in terms of drought, more and fewer places are involved with drought by combining the two 6 and 12-month scale. According to the TOPSIS multivariate decision-making model, it was determined that the three stations most affected by drought based on the TOPSIS model were Bandar Abbas, Ahvaz and Bushehr, respectively, in the south and southwest regions of Iran with priority

 
points of score (1, 0.78, and 0.62 respectively), and the three stations of Gorgan, Shahrekord and Orumieh in the northern and western parts of Iran with the scores of 0.026, 0.033 and 0.035 had lower priorities for drought response, respectively (Table 6) and (Figure 11).
4-Discussion and conclusion
Drought is a natural disaster that is gradually evolving under the influence of climatic anomalies over a long period of time. In recent years, various parts of the Middle East have faced drought, including those regions of Iran in Southwest Asia. In this study, drought phenomenon was assessed at 6 and 12 months using the new fuzzy index T.I.B.I. The results of the research showed that the total frequency of droughts in the 12-month scale was more than 6 months but the severity of a 6-month-old drought is more than 12 months old. On a 12-month scale, the number of drought repetitions is more than 6 months. Drought persistence was higher at 12-month scale, droughts were shorter at short-term and affected by temperature parameter. However, the intensity of drought over a long period of time had a slower response to rainfall changes. The highest percentage of drought incidence in scale of 6 months; Bandar Abbas, Bushehr, Ahvaz and Zahedan stations in the southern half of the study area respectively with the of drought (16.62, 11.24, 14.13 and 62.6 and the lowest in the 6-month scale were Urmia and Ardebil stations, with the percentages of 1.10 and 1.88, Ilam and Yasuj with the drought frequency of 1.61 and 2.01, Rasht and Gorgan, with a high percentage of drought frequency (1.26 and 0.87) in the northern and western part of Iran. The highest percentage of drought occurrence in scale 12; Bandar Abbas and Bushehr stations respectively with drought frequency of 24.30 and 14.83, Ahvaz with drought severity of 18.47, Kerman with 6.74 percent of drought frequencies in the south and southwest of Iran and the lowest in the 6-month scale; stations of Birjand (1.70), Bojnurd (66.6), Urmia (1.17), and Tabriz (66.2) in the northwest of Iran, Rasht (0.58), Sari (0.78) in the northern part of Iran.

کلیدواژه‌ها [English]

  • Statistical evaluation
  • T.I.B.I index
  • Fuzitation
  • Drought
  • ANFIS
Aktiarkajhe, SH., Denpoxi, Y. (2018). Application of Effective Drought Index (EDI) for studying dry periods (Tabriz, Bandar Anzali and Zahedan stations), Irrigation Science and Engineering, 41(1): 133-145.
Alizadeh, SH., Mohammadi, H., Kordvani, P. (2017). Modeling the Dispersion of Drought Caused by Climate Change in Iran Using Dynamic System, Land Expansion, 9(1): 169-188. [In Persian].
Bayazidi, M. (2018). Drought Evaluation of Synoptic Stations in the West of Iran Using the Hirbst Method and Adaptive Neuro-Fuzzy Model, Iranian Water Resources Research, 14(1): 278-284. [In Persian].
Damourandi, A., Rahimi, M., Yazdani, M., Noroozi, A. (2016). Field monitoring of agricultural drought through time series of NDVI and LST indicators, MODIS data (case study: Central Kerman province), Journal of Environmental Spatial Analysis, 2(3): 115-126. [In Persian].
Fani, Z., Khalilalahi, H., Sajjadi, J., Falsleman, M. (2016). Analysis of the causes and consequences of drought in South Khorasan Province and Birjand, Seasonal planning and space planning, 12(20): 175-200. [In Persian].
Fathizadeh, H., Gholaminia, A., Mobin, M., Soodyzizadeh, H. (2017). Investigating the Relationship between Meteorological Drought and Solar Variables in Some Iranian Standards, Environmental hazards, 17(6): 63-87. [In Persian].
Gholamali, M., Younes, K., Esmaeil, H., Fatemeh, T. (2011). Assessment of Geostatistical Methods for Spatial Analysis of SPI and EDI Drought Indices. World Applied Sciences Journal, 15: 474-482.
Haddadi, H., Heidari, H. (2015). Detection of the effect of precipitation fluctuations on surface water flow in the catchment area of Lake Urmia, Journal of Geography and Environmental Programming, 58(6): 247-262. [In Persian].
Hao, Z., Hao, F., Singh, V., Xia, Y., Xinyishen, O. (2016). A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices. Advances in water resources, 14: 240-247.
Huanga, S., Huanga, Q., Changa, J., Zhua, Y., Lengb G. (2015). Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin China. Journal of Hydrology, 530: 127-136.
Jafari, GH., Bakhtiari, F., Doshkamyan, M. (2017). Investigating and analyzing spatial association of droughts with Ghezel Ozan watershed discharge, Geography and Development, 4(15): 79-94.
Janndarmian, I., Shakiba, A., Nasseri, H. (2015). Study of Drought Status and Its Relationship with Quantitative and Qualitative Changes in Groundwater in Sarab Plain, International Conference on Development, Focusing on Agriculture, Environment and Tourism, Iran, Tabriz, pp. 16-17. [In Persian].
Jinum, M.K., Jeonbin, K. (2017). Evaluatin historical drought charactristics simulated in Cordexast Asia against observations. International journal of climatology, 25: 32-43.
Kamasi, M., Malekmahmoodi, M., Montasseri, H. (2017). Forecasting of SPI and EDI Droughts Using ANFIS Modeling in Kohgiluyeh and Boyerahmad Province, Journal of Agricultural Meteorology, 1: 36-47. [In Persian].
KashtarSani, S. (2015). Drought Analysis in West Azarbaijan Province with Spi and Gis Index, International Conference on Agricultural, Environment and Tourism, Iran, Tabriz, pp. 16-17. [In Persian]
Kis, A., Rita, P., Judit, B. (2017). Multi- model analysis of regional dry and wet condition for the Carpatian Region. International journal of climatology, 17: 4543-4560.
Liu, M., Xianli, X., sun, Y., lexander, A., kelin, W. (2017). Decreasing spatial variability of drought in south west china during 1959-2013. International journal of climatology, 21: 4610-4619.
Mirza'i, F., IraqiNezhad, SH., Big-Haddad, A. (2015). Development of WEAP Integrated Water Model Model for Drought Condition Modeling, Journal of Engineering and Watershed Management, 7(1): 85-97. [In Persian].
Modaresirad, A., Ghahramani, B., Khalili, D., Ghahramani, Z., Ahmadiardakani, S. (2017). Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi-arid regions. Advances in water resources, 54: 336-353.
Montasseri, M., Amirataee, B. (2015). Stochastic Estimation of Drought Prevalence (Case Study: Northwest of the country), Civil Engineering and Environmental Engineer, 8(45): 12-26. [In Persian].
Montasseri, M., Norjoo, A., Bahmanesh, J., Akbari, M. (2018) .Investigation of meteorological drought and meteorological droughts in the southern basins of Lake Urmia, Akhydrology, 1: 189-202. [In Persian].
Moradi, H., Tayyi, M., Ghasemian, D., Chesghi, J., Bahari, R. (2008). Simulation and analysis of the relationship between water and climate droughts using probabilistic models of Babol plain, Iran Watershed Association, 2(5): 71-74. [In Persian].
Parsamehr, A., Khosravani, Z. (2017). Drought evaluation using multi-criteria decision making based on TOPSIS, Research on the Range and Desert of Iran, 24(3): 16-29. [In Persian].
Quesada, B., Giuliano, M., Asarre, D., Rangecoft, S., Vanloon, A. (2018). Hydrological change: Toward a consistent approach to assess changes on both floods and droughts. Advances in water resources. 5: P 31-35.
Safarianzengir, V., Sobhani, B. (2020). Simulation and Analysis of Natural Hazard Phenomenon, Drought in Southwest of the Caspian Sea, IRAN, Carpathian Journal of Earth and Environmental Sciences, 15: (1), p. 127 - 136; DOI:10.26471/cjees/2020/015/115.
Safarianzengir, V., Sobhani, B., Asghari, S. (2019). Modeling and Monitoring of Drought for forecasting it, to Reduce Natural hazards Atmosphere in western and north western part of Iran, Iran. Air Qual Atmos Health (2019) doi:10.1007/s11869-019-00776-8.
Salahi, B., Mojtabapour, F. (2016). Spatial Analysis of Drought in Northwest of Iran using spatial correlation statistics. Magazine of Spatial Analysis of Environmental Perils, 6(3): 1-20. [In Persian].
Samedianfard, S., Assadi, A. (2017). Projection of SPI drought profile by multiple regression and multiple vector regression methods, Water and Soil Conservation, 8(6): 1-16. [In Persian].
Shamsenya, A., Pirmoradian, N., Amiri, N. (2008). Drought Modeling in Fars Province Using Time Series Analysis, Geography and Planning, 14(28): 165-189. [In Persian].
Sobhani, B., Ghafarigilandeh, A., Goldost, A. (2015). Drought monitoring in Ardebil province using the developed SEPI index based on fuzzy logic, Journal of Applied Geosciences Research, 15(36): 51-72. [In Persian].
Sobhani, B., Safarianzengir V., Kianian, M.K. (2019b). Modeling, Monitoring and Prediction of Drought in Iran. Iranian (Iranica) Journal of Energy and Environment 10: 216 - 224. doi: 10.5829/ijee.2019.10.03.09.
Sobhani, B., Safarianzengir, V. (2019). Modeling, monitoring and forecasting of drought in south and southwestern Iran, Iran. Modeling Earth Systems and Environment 5: https://doi.org/10.1007/s40808-019-00655-2.
Sobhani, B., Safarianzengir, V. (2020). Evaluation and zoning of environmental climatic parameters for tourism feasibility in northwestern Iran, located on the western border of Turkey, Modeling Earth Systems and Environment, (2020). https://doi.org/10.1007/s40808-020-00712-1.
Sobhani, B., Safarianzengir, V., Kianian M.K. (2019a). Drought monitoring in the Lake Urmia basin in Iran. Arabian Journal of Geosciences 12:448. https://doi.org/10.1007/s12517-019-4571-1.
Sobhani, B., Safarianzengir, V., Kianian, M.K. (2018). Potentiometric Mapping for Wind Turbine Power Plant Installation guilan province in Iran. J. Appl. Sci. Environ. Manage 22: 1363–1368. https://dx.doi.org/10.4314/jasem.v22i8.36.
Spinoni, J., Naumann, G., Vogt, J., Barbosa, P. (2015). The biggest drought events in Europe from 1950-2012. Journal of hydrology: Regional, 3: 509-524.
Torabipodeh, H., Shahinejad, B., Peasant, R. (2018). Drought Estimation Using Smart Grids, Hydrogeomorphology, 7(14): 179-197. [In Persian].
Touma, D., Ashfaq, M., Nayak, M., Kao, S.C., Diffenbaugh, N. (2015). A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526: 196-207.
Zainali, B., Safarianzingir, V. (2017). Drought Monitoring in Urmia Lake Basin Using Fuzzy Index, Journal of Environmental Risks, 7(12): 37-62. [In Persian].
Zeinali, B., Asghari, S., Safarianzengir, V. (2017). Drought monitoring and assessment of its prediction in Lake Urmia Basin using SEPT and ANFIS model, Environmental Impact Spatial Analysis Journal, 3(1): 73-96. [In Persian].
Zeleke, T., Giorgi, T., Diro, F., Zaitchik B. (2017). Trend and periodicity of drought over Ethiopia. International journal of climatology, 65: 4733-4748.
Zolfaghari, H., Nourisamal, Z. (2016). Application of Drought Index (CPEL) in Determining Variables for Analysis of Drought in Iran, Journal of Environmental Spatial Analysis, 9(3): 99-114. [In Persian].