پهنه بندی حساسیت و اولویت بندی عوامل موثر بر وقوع زمین لغزش با استفاده از مدل حداکثر آنتروپی (مطالعه ی موردی: استان لرستان)

نوع مقاله : علمی

نویسندگان

1 عضو هیات علمی مجتمع آموزش عالی شیروان

2 دکتری آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گلستان، ایران

چکیده

زمین­ لغزش یکی از مهم­ترین خطرات طبیعی با خسارات اقتصادی و اکولوژیکی قابل توجه است. استان لرستان به دلیل شرایط کوهستانی و پرباران از جمله مناطق مستعد وقوع زمی ن­لغزش می­باشد. هدف اصلی این تحقیق اولویت­ بندی عوامل مؤثر بر وقوع زمین­ لغزش و پهنه ­بندی حساسیت آن در استان لرستان با استفاده از روش حداکثر آنتروپی و مدل MaxEnt است. جهت انجام این تحقیق از 11 عامل مؤثر بر وقوع زمین­ لغزش شامل ارتفاع، شیب، جهت شیب، انحنای سطح، فاصله از آبراهه، فاصله از گسل، فاصله از جاده، لیتولوژی، کاربری اراضی، بارندگی و شاخص رطوبت توپوگرافیک استفاده شده است. در این تحقیق تقسیم ­بندی 30، 40، 50، 60 و 70 درصد زمین­لغزش ­ها برای اعتبارسنجی جهت تعیین حساسیت و دقت مدل مورد بررسی قرار گرفت و برای ارزیابی مدل از منحنی تشخیص عملکرد نسبی (ROC) استفاده شد. از مجموع 176 زمین­ لغزش، با استفاده از روش فاصله ماهالانوبیس 70درصد به عنوان داده­ های آزمون و 30 درصد به عنوان داده­های اعتبارسنجی بهترین تقسیم­ بندی شد و دقت مدل در مراحل آزمون و اعتبارسنجی بر اساس سطح زیر منحنی در سایر تقسیم ­بندی­ ها کاهش پیدا کرد. نتایج نشان داد که 5/35درصد استان لرستان دارای حساسیت وقوع زمین­ لغزش است. همچنین بر اساس نمودار Jackknife لایه ­های بارندگی، فاصله از جاده، لیتولوژی و کاربری اراضی به ترتیب مهم­ترین عوامل تأثیرگذار بر حساسیت وقوع زمین­ لغزش بودند. سطح زیر منحنی (AUC) بر اساس منحنی تشخیص عملکرد نسبی، نشان­ دهنده ­ی دقت 90درصد (عالی) روش حداکثر آنتروپی در مرحله ­ی آموزش و 83درصد (خیلی خوب) در مرحله ­ی اعتبارسنجی برای تعیین مناطق دارای حساسیت وقوع زمین ­لغزش بود. نتایج این تحقیق جهت آمایش سرزمین و کاهش خسارات ناشی از وقوع زمین­ لغزش، قابل استفاده برای مدیران و مسئولان استانی خواهد بود.

تازه های تحقیق

-

کلیدواژه‌ها


عنوان مقاله [English]

Susceptibility Zoning and Prioritization of the Factors Affecting Landslide Using MaxEnt, Geographic Information System and Remote Sensing Models (Case study: Lorestan Province)

نویسندگان [English]

  • Mehdi Teimouri 1
  • Omid Asadi Nalivan 2
1 Higher Education Complex of Shirvan, Shirvan, Iran
2 Ph.D. Graduate, Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

1-Introduction
The main objective of this research is to prioritize the factors affecting the occurrence of landslide and its susceptibility zoning in Lorestan province using the maximum entropy and MaxEnt models. To do this research, 11 factors affecting the occurrence of landslide including height, slope, aspect, surface curvature, distance from the stream, fault and road, lithology, land use, rainfall, and topographic humidity index have been used. In this research, 30, 40, 50, 60 and 70 percent of landslides were evaluated for validation to determine the sensitivity and accuracy of the model. For evaluation of the model, the relative recognition function curve (ROC) was used. From the total of 176 landslides, 70% of the data was used as the test data and 30% as the validation data using Mahalanobis distance method and the accuracy of the model in the testing and validation stages based on the curve level was reduced. The results showed that 35.5% of the province of Lorestan has a landslide sensitivity. Based on jackknife diagram, rainfall, distance from road, lithology and land use layers were the most important factors influencing the sensitivity of landslide. The AUC level based on the relative function recognition curve indicated a 90% accuracy (excellent) of the maximum entropy method at the training stage and 83% (very good) at the validation stage to determine the landslide susceptibility. The results of this study will be suitable for provincial administrators

 

and managers in order to land planning and reduce the damage caused by landslide occurrence.
Mass movements, including landslide, is one of the most important issues in natural hazards, because its occurrence can cause many human and economic losses, especially in mountainous areas (Symeonakis et al., 2016). Regarding the destructive effects of landslides on natural resources, as well as human habitats and erosion of significant volumes of valuable soils, the identification of susceptible areas and zoning of potential occurrence or landslide susceptibility is vital and very important (Zhang et al., 2019). In recent years, the use of GIS and remote sensing along with machine learning methods has created a new step in the zoning of landslide occurrences. Lorestan province is a vulnerable area to landslide hazard due to the mountainous and wetness conditions. Therefore, the main objective of this research was to prioritize the factors affecting the occurrence of landslide and its susceptibility zoning in Lorestan province using the maximum entropy and MaxEnt model.
2-Methodology
Lorestan province with an area of 2829612 hectares is one of the major provinces in the west of the country. To do this research, 11 factors affecting the occurrence of landslide including altitude, slope, aspect, surface curvature, distance from the stream, fault, and road, lithology, land use, rainfall, and topographic humidity index have been used. The required maps were prepared using GIS and RS techniques. In this research, 30, 40, 50, 60 and 70 percent of landslides` division were evaluated for validation to determine the sensitivity and accuracy of the model. For evaluation of the model, the relative recognition function curve (ROC) was used. Using Mahalanobis distance method, from the total of 176 landslides, 70% of the data was used as the test data and 30% were utilized as the validation data for having the best classification. The difference of the current research with other similar studies was that in this study, use was made of Mahalanobis distance

 

method for classification of validation data and training instead of random classification. The Mahalanobis distance helps to classify data richness and prevents random selection of points for validation. Maximum entropy method (MaxEnt model) is one of the methods of machine learning and one of the main advantages of MaxEnt model is the ability of this model to identify the most important variables and sensitivity analysis of variables using Jackknife method, which has been investigated in the current study.
3-Results
The results showed that 35.5% of the province of Lorestan had landslide susceptibility. Based on Jackknife diagram, rainfall, distance from road, lithology and land use were, respectively, the most important factors influencing the susceptibility of landslide. The AUC level, based on the relative function recognition curve, indicated 90% accuracy (excellent) of the maximum entropy method at the training stage and 83% (very good) at the validation stage to determine the susceptibility of landslide occurrence.
4-Discussion and conclusion
Landslide is considered as one of the most dangerous natural disasters in the world. In this study, taking into account the affective environmental and human factors, and using the maximum entropy method, the map of landslide susceptibility of Lorestan province was prepared. The results showed that factors such as rainfall, distance from the road, lithology, land use, distance from the fault and slope were the most important factors influencing landslide susceptibility with the participation of over 60%, regarding which, land use management and road construction principles need human activity interventions. The drawn ROC curve showed that the accuracy of the model in the estimation of landslide susceptibility regions both in the stage of the test and in the validation stage was excellent and very good, which meant the excellent performance of the model. According to the obtained results, it can be said that MaxEnt model had a high ability to determine areas with

 
landslide susceptibility and due to the speed and accuracy of the model,it is suggested that in similar researches, especially in developing countries, due to the lack of facilities and financial resources, as well as the time consuming of identifying areas with landslide susceptibility, it can be used. In addition to natural factors, some human factors such as road construction, play an important role in the occurrence of landslide, which requires avoiding ecosystem change as a disaster risk factor to reduce relative risks. The results of this research can be applicable to the decision making and management of provincial lands as well as urban planning, and they can have a significant role in preventing and reducing the damage caused by landslide.

کلیدواژه‌ها [English]

  • Lorestan province
  • Maximum entropy
  • GIS
  • machine learning
  • Landslide
Aghdam, I.N., Varzandeh, M.H.M., Pradhan, B. (2016). Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environmental Earth Sciences. 75(7), 553-563.
Amir ahmadi, A., Naemi Tabar, M., Gholkar, B. (2017). Prioritize and zoning factors affecting the landslide model entropy (Case study:Bajgiran, Ghochan. Hydrogeomorphology. 3(11), 105-125.
Arulbalaji, P., Padmalal, D., Sreelash, K. (2019). GIS and AHP techniques Based Delineation of Groundwater potential Zones: a case study from southern Western Ghats, India. Scientific Reports. 9: 2082, doi:10.1038/s41598-019-38567-x.
Bui, T.D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Alizadeh, M.; Chen, W.; Mohammadi, A.; Ahmad, B.; Panahi, M.; Hong, H.; Tian, Y. (2018). Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron Highlands, Malaysia. Remote Sensing. 10(1527), 1-32.
Chen, W., Zhang, S., Li, R., Shahabi, H. (2018). Performance evaluation of the gis-based data mining techniques of best-first decision tree, random forest, and naïve bayes tree for landslide susceptibility modeling. Science of the Total Environment. 644, 1006-1018.
Convertino, M., Troccoli, A., Catani, F. (2013). Detecting fingerprints of landslide drivers: A MaxEnt model. JGR: Earth Surface. 118, 1367–1386.
Davis, J., Blesius, L. (2015). A Hybrid Physical and Maximum-Entropy Landslide Susceptibility Model. Entropy. 17(6): 4271-4292.
Deng, F., Deng, Z., Lv, D., Wang, D., Duan, H., Xing, Z. (2016). Application of Remote Sensing and GIS analysis in groundwater potential estimation in west Liaoning Province, China. Journal of Engineering Research. 4(3), 1-17.
Ding, Q., Chen, W., Hong, H. (2017). Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto International. 32(6), 619-639.
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Divers Distribution. 17(1), 43–57.
Guo, C., Montgomery, D. R., Zhang, Y., Wang, K., Yang, Z. (2015). Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology. 248, 93-110.
Hong, H., Naghibi, S.A., Pourghasemi, H.R., Pradhan, B. (2016). GIS-based landslide spatial modeling in Ganzhou City, China. Arabian Journal Geosciences. 9(2), 1-26.
Hong, H., Shahabi, H., Shirzadi, A., Chen, W., Chapi, K., Ahmad, B., Shadman, M., Yari, A., Tian, Y., Bui, D. (2019). Landslide susceptibility assessment at the Wuning area, China: a comparison between multi‑criteria decision making, bivariate statistical and machine learning methods. Natural Hazards. 96, 173-212.
Jiao, Y., Zhao, D., Ding, Y., Liu, Y., Xu, Q., Qiu, Y., Liu, C., Liu, Z., Zha, Z., Li, R. (2019). Performance evaluation for four GIS-based models purposed to predict and map landslide susceptibility: A case study at a World Heritage site in Southwest China. Catena. 183, 104221.
Kadavi, P., Lee, C.W., Lee, S. (2018). Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sensing. 10(8), 1252.
Kerekes, A.H., Poszet, S.L., Gal, A. (2018). Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj–Napoca Municipality, Romania. Revista de Geomorfologie. 20: 130-146.
Kornejady, A., Ownegh, M., Bahremand, A. (2017). Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena. 152, 144-162.
Liu, J., Duan, Z. (2018). Quantitative Assessment of Landslide Susceptibility Comparing Statistical Index, Index of Entropy, and Weights of Evidence in the Shangnan Area, China. Entropy. 20(868), 1-22.
Mahalanobis, P.C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Sciences (Calcutta). 2, 49–55.
Mirzaei, G., Soltani, A., Soltani, M., Darabi, M. (2018). An integrated data-mining and multi-criteria decision-making approach for hazard-based object ranking with a focus on landslides and floods. Environmental Earth Sciences. 77, 581.
Mohammadkhan, S., Veisi, A., Bagheri, K. (2015). Feasibility of landslide risk using Entropy model, case study: (Shirpnah mountainous region in South West Kermanshah Province). Geographical journal of Territory. 11(44), 89-103.
Mohammadzadeh, K., Bahmani, S., Fathi, M.H. (2017).
Logistic Regression Assessment in the Investigation of the Landslide Potential (Case Study: From Nasirabad to Sattar Khan Dam). Hydrogeomorphology. 3(11), 127-148.
Naghibi, S.A., Pourghasemi, H.R., Pourtaghie, Z.S., Rezaei, A. (2014). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Journal of Earth Sciences. 8, 171-186.
Pandey, V.K., Pourghasemi, H.R., Sharma, M.C. (2018). Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya. Geocarto International. DOI:10.1080/10106049.2018.1510038.
Park, N.W. (2015). Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environmental Earth Sciences. 73, 937-949.
Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modeling. 190, 231–259.
Pourghasemi, H.R., Rossi, M. (2016). Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theoretical and Applied Climatology. 1–25.
Razavi, V., Shirani, K. (2019). Landslide hazard zoning using frequency ratio, entropy methods and TOPSIS decision making methods (Case study: Fahliyan basin, Fars). RS&GIS for Natural Resources. 9(4), 119-138.
Reichenbach, P., Mondini, A., Rossi, M. (2014). The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy). Environmental Management. 54(6), 1372-1384.
Salarian, T., Zare, M., Jouri, M.H., Miarrostami, S., Mahmoudi, M. (2014). Evaluation of shallow landslides hazard using artificial neural network of Multi-Layer Perceptron method in Subalpine Grassland (Case study: Glandrood watershedMazandaran). International Journal of Agriculture and Crop Sciences. 7(11), 795-804.
Sepehr, A., Behniafar, A., Mohammadian, A., Abdollahi, A. (2013). Mapping of landslide susceptibility map of northern slopes of Binalood based on Vikor agreement optimization algorithm. Geomorphological Research. 2(1), 19-36.
Shirzadi, A., Shahabi, H., Chapi, K., Bui, D.T., Pham, B.T., Shahedi, K., Ahmad, B.B. (2017). A comparative study between popular statistical and machine learning methods for simulating volume of landslides. CATENA. 157, 213–226.
Symeonakis, E., Karathanasis, N., Koukoulas, S., Panagopoulos, G. (2016). Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: the case of lesvos island. Land Degradation and Development. 27, 1562–1573.
Teimoori, Z., Hosseinzadeh, R., Kavian, A., Pourghasemi, H.R. (2017). Determination of sensitive areas to Landslide Occurrence Using Shannon Entropy Model (CaseStudy: Chahardangeh Basin, Mazandaran Province). Geography and Environmental Hazards. 6(22), 183-204.
Wang, P., Bai, X., Wu, X., Yu, H., Hao, Y., Hu, B.X. (2018). GIS-Based Random Forest Weight for Rainfall-Induced Landslide Susceptibility Assessment at a Humid Region in Southern China. Water. 10(1019), 1-20.
Youssef, A.M., Pourghasemi, H.R., Pourtaghi, Z., Al-Katheeri, M.M. (2016). Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides. 13(5), 839-856.
Zare, M., Pourghasemi, H.R., Vafakhah, M., Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences. 6(8), 2873-2888.
Zhang, T., Han, L., Han, J., Li, X., Zhang, H., Wang, H. (2019). Assessment of Landslide Susceptibility Using Integrated Ensemble Fractal Dimension with Kernel Logistic Regression Model. Entropy. 21(218), 1-23.