نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه شهید بهشتی

2 دانشیار دانشکده ی علوم زمین، ژئومورفولوژی، دانشکده ی علوم زمین، دانشگاه شهیدبهشتی، تهران، ایران

3 دانش‌آموخته‌ی کارشناس ارشد، ژئومورفولوژی، دانشکده‌ی علوم زمین، دانشگاه شهیدبهشتی، تهران، ایران

چکیده

رودخانه‌ها سیستم‌های طبیعی پیچیده‌ای هستند لذا طبقه‌بندی رودخانه می‌تواند درک بهتری از مطالعه ­ی فرآیندها و اشکال رودخانه را فراهم آورد. در این پژوهش برای ارزیابی طبقه‌بندی الگوی جریان در رودخانه ­ی کلیبرچای از مدل راسگن در سطح 1 ،2، 3 استفاده شده است. بدین منظور یک بازه ­ی 3 کیلومتری مابین دو روستای پیغام و قشلاق تعیین گردید و سپس 8 مقطع عرضی در این بازه انتخاب شد. جهت شبیه­سازی رودخانه و استخراج پارامترهای مورد نیاز از نقشه‎های زمین­ شناسی، توپوگرافی، کاربری ‎اراضی استفاده گردید. پس از بازه‌بندی مسیر رودخانه با تکیه‌ بر بازدیدهای میدانی و نقشه­ های توپوگرافی طبقه‌بندی سطح 1 و 2 که بر اساس متغیرهای شیب، ضریب انحنا، عرض دبی لبالبی، متوسط عمق دبی­ لبالبی، عرض دشت سیلابی و جنس مصالح بستر است، در 8 مقطع مورد نظر در رودخانه ­ی کلیبرچای انجام گرفت. بر پایه ­ی تحلیل های صورت گرفته مورفولوژی آبراهه کلیبرچای در بازه‌های 1، 3، 4، 5 از نوعB ، در بازه‌های 2، 6، 7، 8 از نوع C می‎باشد. نتایج ارزیابی شرایط پایداری در سطح سوم طبقه­بندی راسگن نیز نشان داد، بازه­ ی‎ 2 و 6 هر دو از گروه تیپ C، در وضیعت خوب و پایدار قرار گرفتند، بازه‎های 1 و 4 از گروه تیپB  و 8 از گروه تیپ C، به در وضعیت متوسط ناپایداری محدود و بازه ­ی 3 و 5 از گروه تیپ B، 7 از گروه تیپ C در وضیعت ضعیف و ناپایدار قرار گرفتند. بنابراین سیستم طبقه­ بندی راسگن در ارتباط با شناخت مورفولوژیک رودخانه کلیبرچای و سیستم‌های فلویال مشابه مناسب ارزیابی شده است.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

Morphological Classification and Channel Instability of Kaleybarchai River

نویسندگان [English]

  • Somaiyeh Khaleghi 1
  • MohammadMahdi Hosseinzadeh 2
  • Payam Fathollah Atikandi 3

1 Assistant Professor, School of Earth Scinecs, Shahid Beheshti University, Tehran

2 Associate Professor, School of Earth Scinecs, Shahid Beheshti University, Tehran

3 MSc in Geomorphology, School of Earth Scinecs, Shahid Beheshti University, Tehran

چکیده [English]

1-Introduction
One of the methods used in river surveys is river classification. The main aim of the classification of the river is simplify the processes of hydrology and sedimentation, and ultimately predict river behavior. So far, rivers have been categorized from different perspectives and the basics of these categories are including topography, slope, flow discharge, river age, and pattern in the plan. The first classification Recognized by Davis in 1899. Davis classified the rivers according to their evolution and modification into three groups of young, mature, and old. Leopold and Welman (1957) divided the form of alluvial rivers based on the sinuosity coefficient and the ratio of width to Depth into three straight, meandering and braided groups. A descriptive classification by Shumm (1963) presented based on two factors of river stability and sediment transport. The objectives of this research are to identify the factors affecting the bank erosion of the Kaleybarchai River, identifying the damages incurred in the construction and banks of the river, runoff and preventing possible floods. In this research, the river classification system is based on the Rosgen method, which is presented by the American researcher Rosgen (1994) to the river engineering community. The Rosgen method is the most complete and comprehensive method provided so far and includes many of the

 
features of previous systems. Rivers are living beings that constantly change their beds and banks, and this causes the river to undergo major changes over time. In addition, human activities, such as the utilization of riverine material and river modification, will cause the river to be moved.
2-Methodology
To evaluate the classification of the flow pattern in the Kaleybarchai River, the Rosgen model has been used at levels I, II, III. A reach of 3 km between the two villages of Pazhagh and Gheshlag was determined, and then 8 cross sections were selected in this reach. To simulate the river and extract the required parameters from geological maps, topography, land use and ARC GIS software was used. After determining the river reaches, based on field observations and topographic maps, classification in level I and level II were carried out in 8 cross-sections at the Kaleybarchai River, which are based on the slope, curvature coefficient, bankfull width, mean flood plain depth, flood plain width and bed material.
3-Results
After crossing the river route with field observations and then analyzing data and general calculations, 8 cross sections from the entire river course were extracted in all of the studied river and all the parameters required for classification and geometrical identification of the channel wrer calculated.
In order to obtain the average size of channel material, 16 samples were taken at river in different reaches and were analzed in the laboratory (Table 2). According to the obtained data, the highest percentage of particles along the river were average sand with 26.6% and cobble up to 14.7%, which were evaluated for the Rosgen classification, according to the results, the total of river is in groups B and C.
To determine the channel type at level I, after obtaining the slope of the Kaleybarchai River in the study area, four sections of the river were in type B and four sections in type C.
4-Discussion and conclusion
Based on morphological indices, sediment content and flow conditions, two different types of channels including B and C were identified in the study area and evaluated level according to the Rosgen in level I, II and III.
Morphological study of type B in relation to the evaluation of the correspondence and efficiency of the Rosgen model showed that their dominant morphology consisted of narrow valleys with relatively low widths and moderate slopes and relatively stable banks.  Type C has meandering and high sinuosity, valleys with floodplain and point bars in low slope.
The high instability of the river bed in the reaches of 3, 5, 7, is a threat to the agriculture land land and surrounding buildings. Due to the fact that the braided rivers are not stable and the flow and position of the sedimentary islands and the width of this rivers are constantly changing, it is necessary to manage and organize the operations in this section with regard to the morphological variables and Flow conditions. The results of the Kaleybarchai River assessment based on the Rasgen classification system at level I, II and III showed that the Rosgen system present good the patterns of the channel in the Kaleybarchai River and, consequently, the effective parameters in the classification and separation of the channels. In this way, there are differences in the quantities and the parameters due to the specific conditions of the factors affecting in the locality.

کلیدواژه‌ها [English]

  • Rosgen model
  • River classification
  • Channel stability
  • Kaleybarchai River
Bernhardt, E.S., Palmer, M.A., Allan, J.D., Alexander, G., Barnas, K., Brooks, S., Carr, J., Clayton, S., Dahm, C., Follstad-Shah, J., Galat, D., Gloss, S., Oodwin, P., Hart, D., Hassett, B., Jenkinson, R., Katz, S., Kondolf, G. M., Lake, P. S., Lave, R., Meyer, J. L., O’Donnell, T. K., Pagano, L., Powell, B. & Sudduth, E. (2005). Synthesizing U. S. river restoration efforts, Science, 308, 636–637.
Coryat., M. (2014). Analysis of the Bank Assessment for Non-point Source consequences of Sediment (BANCS) Approach for the Prediction of Streambank Stability and Erosion along stony Clove Creek in the Catskills, Master Theses, Syracuse University.
Deputy of Strategic Planning and Supervision. (2012). Handbook of river Geomorphological Studies. 529, 166 p.
Fatemi Aghda, M., Fayazi, F., & Alipour, D. (2001). Engineering Geology Survey in a Part of Karkheh River (Abdulkhan to Elhaei Village), Journal of Tarbiat Moallem University of Science, 3 and 6, 163-179.
Genet, M., Stokes, A., Salin, F., Mickovski, S. B., Fourcaud, T., Dumail, J.F., et al. (2005). The influence of cellulose content on tensile strength in tree roots. Plant and Soil, 278, 1-9.
Gurnell, A. (1997). The hydrological and geomorphological significance of forested floodplains. Global Ecology and Biogeography Letters, 6, 219-229.
Hosseinzadeh, M.M., Esmaili, R. (2015). River Geomorphology. Concepts, Forms, and Processes. Tehran, Shahid Beheshti University Press.
Hosseinzadeh, M.M., Esmaili, R. (2015). Comparison of Rosgen and Steel River Methods in Classification of Mountain Rivers, Case Study of North Alborz, Lavij Catchment. Earth Science Researches, 21, 64-79. 
Hosseinzadeh, M.M., Esmaili, R., & Motavoli, F. (2005). An Examination of the Rosgen Classification System Efficiency Case Study. Classification of Babol and Talar rivers on the Caspian coastal plain zone. Territory, 5, 61-51.
Hosseinzadeh, M.M., Khaleghi, S., Vahedifar, F. & Rostami, M. (2016). Estimation of lateral erosion in Qaranqu Chai of Hashtrood River using Rasgen Model, National Conference of Iranian Association of Geomorphology, Tehran.
Hosseinzadeh, M.M., Khaleghi, S., & Vahedifar, F. (2017). Evaluation of Morphological Changes and Stability of the Qaranqu Chai of Hashtrood River Using the BEHI Model. Hydrogeomorphology, 1, 145-164.
Kang, R.S. (2007). Effects of urbanization on channel morphology of three streams in the Central Redbed Plains of Oklahoma. ProQuest. Ph.D thesis. Faculty of the Graduate College. Oklahoma State University.
Karam, A., Layeghi, S. (2014). Hydrogeomorphological Classification of Jajrood River with Rosgen Model, Quantitative Geomorphological Research, 3, 14-130.
Khaleghi, S. (2016). Determination of Bankfull Discharge and Stream Power of Lighvan Chai River Based on Channel Morphometric Characteristics, Earth Science Researches, 28, 152-139.
Khaleghi, S., Malekani, L. (2015). Estimation of Bank Erosion of Lighvan Chai River Using Rasgen Near Bank Shear Stress Index, Third International Congress of Geography and Sustainable Development, Tehran.
Krishna, G. G. Pal, S., & Mukhopadhyay, S. (2016). Validation of BANCS model for assessing stream bank erosion hazard potential (SBEHP) in Bakreshwar River of Rarh region, Eastern India. Model. Earth Syst. Environ., 2:95, 1-15. DOI 10.1007/s40808-016-0172-0.
Lawler, D. M. (1995). The impact of scale on the processes of channel-side sediment supply: a conceptual model. Effects of Scale on Interpretation and Management of Sediment and Water Quality, 226, 175-184.
Leopold, L.B., Wolman, M.G. (1957). River Channel Patterns, Braided, Meandering and Straight. U.S. Geological Survey Professional Paper. 282-B, 283-300.
Moret, S.L., (2001). Predicting Channel Stability in Colorado Mountain Streams Using Hydrobiogeomorphic and Land Use Data: A Cost-Sensitive Machine Learning Approach to Modeling Rapid Assessment Protocols, Doctor of Philosophy, Oregon State University.
Pollen, N. (2007). Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena, 69, 197-205.
Rezaei Moghaddam, M.H., Servati, M.R. & Asghari Saraskanrood, S. (2012). Stability Analysis of Ghezel Ouzan River Channel Using Shear Stress Methods, Relative Resistance Index and Field Studies. Quantitative Geomorphological Research, (1) 1, 46-33.
Roostaei, S., Khorshiddoust, A.M., & Khaleghi, S. (2013). Evaluation of Lighvan Chai River Morphology by Rosgen Classification. Quantitative Geomorphological Research, 4, 1-16.
Rosgen, D.L. (1994). A classification of natural rivers. Catena, 22: 169-199.
Rosgen, D.L. (1996). Applied River Morphology. Colorado, Wildland Hydrology, Pagosa Springs.
Rosgen, D.L. (2001). A Strem Channel Stability Assessment Methodology, Proceedings of the Seventh Federal Interagency Sedimentation Conference.
Rostami, M. (2015). Analysis of Slope Instability and Estimation of Bank Erosion in Galali River, MSc Thesis, Shahid Beheshti University, Tehran.
Schumm S.A. (1963). A tentative classification of alluvial river channels. US, Geol Survey Circular.
Schumm, S. A. (1973). Geomorphic thresholds and complex response of drainage Systems. Fluvial Geomorphology, In: M. Morisawa (Editor), New York, Binghamton, 299-310
Wynn, T. M. and Mostaghimi, S. (2006). The effects of vegetation and soil type on streambank erosion, Southwestern Virginia, USA. Journal of the American Water Resources Association. 42 (1), 69-82.