نوع مقاله : پژوهشی

نویسندگان

1 دانشیار گروه علوم زمین، دانشکده علوم‌طبیعی،دانشگاه تبریز ، تبریز، ایران

2 استادیار گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه ارومیه، ارومیه، ایران.

3 دانشجوی کارشناسی ارشد هیدروژئولوژی، دانشگاه ارومیه، ارومیه، ایران.

4 دانشجوی دکتری هیدروژئولوژی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران.

چکیده

چکیده
ارزیابی آسیب­ پذیری آبخوان به منظور تعیین مناطق دارای پتانسیل آلودگی برای مدیریت منابع آب‌زیرزمینی از اهمیت بالایی برخوردار است. در این پژوهش، از روش SINTACS برای ارزیابی آسیب­پذیری آبـخوان دشت بیلوردی اسـتفاده شده است. در روش SINTACS پارامترهای مؤثر در ارزیابی آسیب­پذیری سفره­ ی آب زیرزمینی، شامل عمق سطح ایستابی، تغذیه ­ی خالص، جنس سفره، نوع خاک، شیب توپوگرافی، مواد تشکیل­دهنده­ ی منطقه­ ی غیراشباع و هدایت هیدرولیکی استفاده می­شود که به صورت 7 لایه در محیط ArcGIS تهیه شدند که پس از اختصاص وزن و رتبه­ بندی و تلفیق 7 لایه یاد شده، نقشه­ ی نهایی آسیب­پذیری آبخوان تهیه و شاخص SINTACS برای کل منطقه بین 79-169برآورد شد. برای صحت­ سنجی روش از داده­ های غلظت نیترات در منطقه استفاده شد. برای بهبود نتایج روش SINTACS، از مدل فازی ممدانی استفاده و به این منظور داده‌های ورودی (پارامترهای SINTACS) و خروجی (شاخص آسیب­پذیری تصحیح­ شده) و مقادیر نیترات مربوطه به 2 دسته آموزش و آزمایش تقسیم شد و پس از آموزش مدل، با استفاده از مقادیر نیترات نتایج مدل در مرحله­ ی آزمایش مورد ارزیابی قرار گرفت. مدلMFL  با افزایش ضریب تعیین روش SINTACS از 61/0به 85/0 که حاصل حذف خطای نظر کارشناسی اعمال شده در روش کلاسیک می باشد، توانایی خود را در بهبود نتایج روش SINTACS  اولیه نشان داد.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

The Optimization of SINTACS Framework Using MFL Model to Evaluate the Vulnerability of Bilverdi Aquifer

نویسندگان [English]

  • AtaAllah Nadiri 1
  • Esfandiar Abbas Novinpour 2
  • Rana Faalaghdam 3
  • Zahra Sedghi 4

1 Associote Proessor, Faculty of Natural Science, Department of Geology, Tabriz University, Tabriz, Iran,(Corresponding author), E-mail:nadiri.ata@gmail.com

2 - Assistant Professor Department of Geology, Faculty of Basic Sciences, Urmia University, Urmia, Iran.

3 - Master Degree in Hydrogeology, Department of Geology, Faculty of Basic Sciences, Urmia University, Urmia, Iran.

4 - Ph.D Candidate, Faculty of Natural Science, Department of Geology, Tabriz University, Tabriz, Iran.

چکیده [English]

Introduction
Population growth and the development of the agriculture and industry and the excessive use of groundwater resources have caused a drop in the water level. In arid and semi-arid areas, aquifer water management plays an appropriate role within human health of river basins and, therefore, their protection from anthropogenic contamination sources can be managed by proactive tools based on the aquifer vulnerability indices. The groundwater system does not respond quickly to contaminants. The arrival and diffusion of pollutants to groundwater occurs over time. Groundwater contamination is identified using the aquifer to provide water.  Consequently, complete elimination of pollution is a long and often impossible process.The concept of vulnerability was first introduced in the late 1960s in France to provide information on groundwater contamination. The SINTACS framework is a suitable prescriptive approach but despite its popularity, it is susceptible to the need for expert judgment on assigning weights and rates for each parameter, which expose the output vulnerability maps to uncertainties in the same study area. Among different AI techniques, the current study was based on Mamdani Fuzzy Logic (MFL) to remove the expert opinion applied to SINTACS indices.
Materials and Methods
The Bilverdi sub-basin, with an area of 289 km2, is located approximately in 65 km of Tabriz city, East Azerbaijan, Iran. There is a vallilu arsenic mine to the north of Bilverdi plain. There are 208 wells, 7 springs, and 17 qanats in the study area.There is a possibility that the mine drainage leaks into the water resources and also extensive agricultural activities in the region increase the need to evaluate the vulnerability of the Bilverdi plain. In this study, SINTACS methods were used for the assessment of the inherent vulnerability of the Bilverdi plain aquifer. The SINTACS method is a PCMS which was developed by Civita and De Maio(2004) in order to assess the intrinsic vulnerability of groundwater with an increasing weight parameters and the wider range of ratings than the DRASTIC method. The acronym SINTACS originates from Italian words. The SINTACS method uses seven effective environmental parameters including Soggiacenza (depth of water), Infiltrazione efficace (effective infiltration), Non saturo (vadose zone), Tipologia della copertura (soil cover), Acquifero (aquifer), Conducibilità idraulica (hydraulic conductivity), and Superficie topografica (slope of topographic surface) to assess the vulnerability of the aquifer. After assigning weight and rate in the ArcGIS software, it was prepared as raster layers. Then SINTACS optimization was performed using Mamdani Fuzzy Logic (MFL). In this research, for the first time, the SINTACS method was optimized with artificial intelligence methods. Seven layers of the SINTACS method as an input and the SINTACS index corrected with nitrate were selected as the output model.
 
 
Results and Discussion
The SINTACS vulnerability Index Obtain by overlaying these seven layers and the Mamdani Fuzzy Logic (MFL) were used to optimize the SINTACS method and the data was divided into two categories of train and test. After model training, the model results were evaluated by the nitrate concentration through coefficient of determination (R2) and correlation index (CI) criteria. The results are as follows: The SINTACS Vulnerability Index was estimated to be between 70 and 169, of which 30, 67 and 3% of the study area were respectively located in low, medium, and high vulnerability zones.The results of the validation of the vulnerability maps with measured nitrate concentrations showed a correlation index (CI = 29). The results of the Mamdani Fuzzy Logic (MFL) were respectively R2 = 0.9, RMSE = 5.1 and R2 = 0.85, RMSE = 7.79 in the training and testing stages.  The Vulnerability map of the numerical index is between 167.23 and 88.94 and the correlation index was (CI = 31).
Conclusion
This study used the SINTACS framework to assess groundwater vulnerability for Bilverdi basin, East Azerbaijan, Iran. The combined use of the SINTACS method and the geographical information system (GIS) produced a useful groundwater vulnerability map. The SINTACS index was calculated from 70   to 169. The poor determination coefficient calculated by the basic SINTACS framework made a research case for the application of Mamdani Fuzzy Logic. The results showed that Mamdani Fuzzy Logic (MFL) model showed high capability to improve the results of the general SINTACS and reduced the subjectivity of the model. The most vulnerable areas were in the northeast and southwest plain. The high vulnerability area needed to adopt strategic plans and policies to prevent the pollution of aquifers.

کلیدواژه‌ها [English]

  • Keywords: Vulnerabiligy Bilverdi Plain Aguifer
  • SINTACS method
  • MFL model
منابع
ـ ندیری، عطاالله؛ صدقی، زهرا و نعیمه کاظمیان (1396)، بهینه‌سازی روش DRASTIC با استفاده از هوش مصنوعی برای ارزیابی آسیب‌پذیری آبخوان چندگانه دشت ورزقان، اکوهیدرولوژی،  شماره ­ی 4، صص 1089-1103.
-Antonakos, A.K., Lambrakis, N.I. )2007), Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates based on the drastic model, an example from NE Korinthia, Greece, Journal of Hydrology, PP. 288-304.
-Corniello, A., Ducci, D., Monti, G.M. (2004), Aquifer pollution vulnerability in the Sorrento peninsula, southern Italy, evaluated by SINTACS method, Geofísica Internacional, Vol. 43, No. 4, PP. 575-581.
-Chilton, P.J., Vlugman, A., Foster, S. (1990), A groundwater pollution risk assessment for public water supply sources in Barbados, American Water Resources Association International Conference on Tropical Hydrology and Caribbean Water resources, San Juan de Puerto Rico, PP. 279-289.
-Civita, M. (1990), La valutacione della vulnerabilitia degli aquifer all’inquinamamento, InProceedings of 1st con. naz. protezione egestione delle aque sotterranee:metodologie,technologie e obiettivi, Maranosul Panaro, PP. 39-86.
-Di Martino, F., Sessa, S., Loia, V., (2005), A fuzzy-based tool for modelization and analysis of the vulnerability of aquifers: a case study, International Journal of Approximate Reasoning, Vol. 38, PP. 99-111.
-Foster, S.S.D., Chilton, P.J., (2003), Groundwater: the processes and global significance ofaquifer degradation. Philos. Trans. R. Soc. Lond. B Biol. Sci, Vol. 358, No.1440, PP. 1957-1972.
-Gianluigi, B., Nerantzis, K., Nicolo, C., & Micol., M. (2017), A modified SINTACSmethod for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3 − and SO4 2− concentrations, Science of the Total Environment, Vol. 609, PP. 1512-1523.
-Kazakis, N., Voudouris, K., (2015), Groundwater vulnerability and pollution risk assessmentof porous aquifers to nitrate: modifying the drasticmethod using quantitative parameters, Journal of Hydrology, Vol. 525, PP. 13-25.
-Kumar, S., Thirumalaivasan, D., Radhakrishnan, N., & Mathew, S, (2013), Groundwater vulnerability assessment using SINTACS model, Vol. 19, No. 6, PP.1947-5705.
-Mamdani, E.H., Assilian, S., (1975), An experiment in linguistic synthesiswith a fuzzy logic controller, International Journal of Man-Machine Studies, Vol. 7, No. 1, PP. 1-13
-Mamdani, E.H. (1997), Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis, Computer, IEEE Transaction C, Vol. 26, No. 12, PP.1182-1191.
-Nadiri, A.A., Garekhani, M., Khatibi, R., Moghadam, A.A., (2017,b), Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models, Environmental Science and Pollution Research, Vol. 24, No. 9, PP. 8562- 8577.
-Nadiri, A.A., Sedghi, Z.,  Khatibi, R., Gharekhani, M., (2017c), Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures, Science of The Total Environment, Vol. 593-594, PP. 75-90.
-Nadiri, A.A. Fijani, E., Moghadam, A.A., (2013), Supervised committee machine with artificial intelligence for prediction of fluoride concentration, Journal of Hydroinformatics, Vol. 15, No. 4, PP. 1474-1490.
-Stigter, T.Y., Ribeiro, L and Carvalho Dill, A.M.M., (2006), Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination level in two agriculture regions in the south of Portugal, Hydrogeol J, Vol. 14, PP. 79-99.
-Uricchio, V.F., Giordano, R., Lopez, N., (2004), A fuzzy knowledge-based decision support system for groundwater pollution risk evaluation, Journal of Environmental Management, Vol. 73, PP.189-197.
-Van Stempvoort, D., Ewert, L., Wassenaar, L., (1993), Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping, Canadian Water Resources Journal, Vol. 1, PP.  25-37.