توسعه مدل ترکیبی IHACRES–XGBoost برای شبیه‌سازی رواناب روزانه در حوضه قره‌سو

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری سنجش از دور، گروه سنجش از دور، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، ایران

2 استاد گروه سنجش از دور، دانشگاه تبریز

3 دانشیار، گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران

چکیده

در این پژوهش، با هدف بهبود دقت شبیه‌سازی رواناب روزانه در حوضه‌ی قره‌سو واقع در استان کرمانشاه، یک چارچوب مدل‌سازی ترکیبی مبتنی بر تلفیق مدل مفهومی IHACRES و الگوریتم‌های پیشرفته یادگیری ماشین توسعه داده شد. داده‌های مورد استفاده شامل بارش، دمای حداقل، حداکثر و میانگین و دبی رودخانه از ایستگاه‌های هیدرومتری پل‌کهنه و قورباغستان در بازه‌ی زمانی ۱۹۹۵ تا ۲۰۲۳ می‌باشند. در مرحله نخست، مدل نیمه‌توزیعی IHACRES جهت شبیه‌سازی فرآیند بارش–رواناب پیاده‌سازی گردید و با بهره‌گیری از الگوریتم ژنتیک،پارامترهای آن بهینه‌سازی شد. به‌منظور حذف نوسانات کوتاه‌مدت، یک فیلتر میانگین متحرک سه‌روزه بر خروجی مدل اعمال شد. سپس،با استفاده از خروجی IHACRES و مجموعه‌ای از متغیرهای مشتق‌شده شامل ویژگی‌های تأخیری، آماره‌های بارش و دما، شاخص‌های زمانی و خشکسالی، یک مدل یادگیری ماشین نوع XGBoost طراحی گردید. عملکرد مدل‌ها با شاخص‌های آماری RMSE و NSE در دو دوره آموزش و آزمون مورد ارزیابی قرار گرفت. نتایج نشان داد که مدل پایه‌ی IHACRES عملکردی در حد قابل قبول داشت (NSE≈0.44)، اما با اعمال فیلتر میانگین متحرک و بهینه‌سازی پارامترها، دقت آن به‌طور متوسط تا ۳۰٪ افزایش یافت. در نهایت، مدل ترکیبی IHACRES–XGBoost با دستیابی به مقدار NSE بیش از ۰.۹۷ و RMSE کمتر از ۱۰، بالاترین دقت را ارائه کرد. این یافته‌ها نشان‌دهنده‌ی کارایی بالا و پتانسیل بالای مدل‌های ترکیبی در ارتقاء پیش‌بینی رواناب روزانه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improving the hybrid IHACRES–XGBoost model for simulating daily runoff in the Gharesu Basin

نویسندگان [English]

  • vahid kakapor 1
  • maryam bayatikhatibi 2
  • Saeed Saeed Samadianfard 3
1 . Ph.D. Student in Remote Sensing, Department of Remote Sensing, Faculty of Environmental Planning and Sciences, University of TabrizIran
2 Professor in Remote Sensing, Department of Remote Sensing, Faculty of Environmental Planning and Sciences, University of TabrizIran
3 Associate Professor, Department of Water Engineering, Tabriz University, Tabriz, Iran
چکیده [English]

In this study, with the aim of improving the accuracy of daily runoff simulation in the Ghareso basin located in Kermanshah province, a hybrid modeling framework was developed based on the integration of the IHACRES conceptual model and advanced machine learning algorithms. The data used included precipitation, minimum, maximum, and average temperatures, and river discharge from the Pol-e-Kohne and Qorbaghestan hydrometric stations during the period 1995 to 2023. In the first stage, the IHACRES semi-distributed model was implemented to simulate the precipitation-runoff process and its parameters were optimized using a genetic algorithm. In order to remove short-term fluctuations, a three-day moving average filter was applied to the model output. Then, using the IHACRES output and a set of derived variables including lag features, precipitation and temperature statistics, time and drought indices, an XGBoost type machine learning model was designed. The performance of the models was evaluated with the statistical indices RMSE and NSE in two training and testing periods. The results showed that the basic IHACRES model had an acceptable performance (NSE≈0.44), but by applying the moving average filter and optimizing the parameters, its accuracy increased by an average of 30%. Finally, the combined IHACRES–XGBoost model provided the highest accuracy by achieving an NSE value of more than 0.97 and an RMSE of less than 10. These findings indicate the high efficiency and high potential of the combined models in improving daily runoff forecasting.

کلیدواژه‌ها [English]

  • IHACRES
  • Genetic Algorithm
  • XGBoost
  • Runoff Simulation
  • Moving Average
  • Machine Learning
  • Nash–Sutcliffe Index Gharesu Basin
 
Abushandi, E., & Merkel, B. (2013). Modelling rainfall–runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan. Water Resources Management, 27(7), 2391–2409. https://doi.org/10.1007/s11269-013-0292-3.
Aghabeigi, N., Esmaili Ouri, A., Abazar, N., Mostafazadeh, R., & Golshan, M. (2019). Effects of climate change on runoff using the IHACRES hydrological model in some watersheds of Ardabil Province. Iranian Journal of Irrigation and Water Engineering, 10(2), 178–189. https://doi.org/10.22125/iwe.2019.100750.
Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., & Zehtabiyan, G. R. (2019). Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall–runoff simulation: A case study of the Kan watershed, Iran. Physics and Chemistry of the Earth, 111, 65–77. https://doi.org/10.1016/j.pce.2019.05.002.
Bayati Khatibi, M., Kakapour, V., & Sadeghi, M. (2025). Discharge prediction using IHACRES semi-conceptual model: A case study of Gharasoo Basin, Kermanshah province. Quantitative Geomorphological Researches, 13(3), 104–119. https://doi.org/10.22034/gmpj.2024.384992.1417.
Chen, T. Q., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). https://doi.org/10.1145/2939672.2939785.
Croke, B. F. W., & Jakeman, A. J. (2008). Use of the IHACRES rainfall–runoff model in arid and semi-arid regions. In H. S. Wheater, S. Sorooshian, & K. D. Sharma (Eds.), Hydrological modeling in arid and semi-arid areas (pp. 41–48). Cambridge University Press Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics. Springer.
Esmali, A., Golshan, M., & Kavian, A. (2021). Investigating the performance of SWAT and IHACRES in streamflow simulation under different climatic regions in Iran. Atmósfera, 34(1), 79–96. https://doi.org/10.20937/ATM.2021.34.01.07
monthly river flow prediction: Integrating artificial intelligence and non-linear time series models. Journal of Hydrology, 575, 1200–1213. https://doi.org/10.1016/j.jhydrol.2019.06.025
Fattahi, P., Ashrafzadeh, A., Pirmoradian, N., & Vazifedoust, M. (2022). Integrating IHACRES with a data-driven model to investigate the possibility of improving monthly flow estimates. Water Supply, 22(1), 360–371. https://doi.org/10.2166/ws.2021.342
Fouladi Nasrabadi, M., Amirabadizadeh, M., Pourreza Bielandi, M., & Yaghoubzadeh, M. (2022). Evaluation of IHACRES model performance with ARMAX and EXPUH linear methods (Case study: Shoor river basin in Qaen). Journal of Water and Soil, 36(1), 17–30. https://doi.org/10.22067/jsw.2022.74115.112.
Fouladi Nasrabadi, M., Amirabadizadeh, M., Pourreza Bielandi, M., & Yaghoubzadeh, M. (2022). Evaluation of IHACRES model performance with ARMAX and EXPUH linear methods (Case study: Shoor river basin in Qaen). Journal of Water and Soil, 36(1), 17–30. https://doi.org/10.22067/jsw.2022.74115.1122.
data-driven deep learning methodology with deep feature selection. Environmental and Ecological Statistics, 32, 409–459. https://doi.org/10.1007/s10651-024-00642-6.
Ismail, I. I., Jibril, M. M., Muhammad, U. J., Mahmoud, I. A., Aliyu, U. U., Abdullahi, A., & Malami, S. I. (2025). Ensemble machine learning technique based on Gaussian algorithm for stream flow modelling. Techno-Computing Journal, 1(2), 1–17. https://doi.org/10.71170/tecoj.2025.1.2.pp1-17.
James  K,. W. (2024). Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA). Hydrology and Earth System Sciences, 28, 4427–4454. https://doi.org/10.5194/hess-28-4427-2024.
Khorsandi Kohanestani, Z., & Ta'atpour, F. (2025). Comparison of the efficiency of integrated models and machine learning methods in discharge simulation. Hydrogeomorphology, 12(42), 60–80. https://doi.org/10.22034/hyd.2024.63280.1754.
Mohammadi, B., Moazenzadeh, R., Christian, K., & Duan, Z. (2021). Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models. Environmental Science and Pollution Research, 28, 65752–65768. https://doi.org/10.1007/s11356-021-15131-6.
Mohammadi, B., Safari, M. J. S., & Vazifehkhah, S. (2022). IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall–runoff modeling. Scientific Reports, 12, 12096. https://doi.org/10.1038/s41598-022-16217-1.
Momeneh, S. (2022). Comparison of artificial intelligence models with IHACRES model in flow modeling of Gamasiab river basin. Modeling and Management of Water and Soil, 2(3), 1–16. https://doi.org/10.22098/mmws.2022.9972.1076.
Nazeri Tahroudi, M., Ahmadi, F., & Mirabbas, R. (2023). Performance comparison of IHACRES, random forest and copula-based models in rainfall–runoff simulation. Applied Water Science, 13, 134. https://doi.org/10.1007/s13201-023-01929-y.
Niromandfard, F., Zakerinia, M., & Yazerloo, B. (2018). Investigating the effect of climate change on river flow using IHACRES rainfall–runoff model. Irrigation Sciences and Engineering, 41(3), 103–117. https://doi.org/10.22055/jise.2018.13750.
Noori, N., & Kalin, L. (2016). Coupling SWAT and ANN models for enhanced daily streamflow prediction. Journal of Hydrology, 533, 141–151. https://doi.org/10.1016/j.jhydrol.2015.11.050.
Prakash, S., Sandilya, S. S., & Das, B. S. (2025). Discharge prediction in meandering compound channel using XGBoost and CATBoost. In M. Pandey, N. V. Umamahesh, Z. Ahmad, & G. Oliveto (Eds.), Hydraulics and fluid mechanics, volume 2. HYDRO 2023. Lecture Notes in Civil Engineering, 2 (pp. 429–437). Springer. https://doi.org/10.1007/978-981-97-8895-8_30.
Saber, M., Salahi, B., & Maleki Meresht, R. (2025). Simulating the water balance of Aras basin based on the CNRM-CM6 climate model. Hydrogeomorphology, 12(42): 99 – 117. DOI: 10.22034/hyd.2024.63758.1759.
Salehpoor Laghani, J., Ashrafzadeh, A., & Moussavi, S. A. (2020). Investigating the uncertainty of data-based models in forecasting monthly flow of the Hablehroud River. Iranian Journal of Soil and Water Research, 51(5), 1265–1280. https://doi.org/10.22059/ijswr.2020.286920.668288.
Yangyu, D., Zhang, D., Zhang, D., Wu, J., & Liu, Y. (2023). A hybrid ensemble machine learning model for discharge coefficient prediction of side orifices with different shapes. Flow Measurement and