نوع مقاله : پژوهشی

نویسندگان

1 استادیار گروه مهندسی طبیعت، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، خوزستان، ایران.

2 دانشجوی دکتری، دانشکده مهندسی مرتع و آبخیزدری، دانشگاه یزد، ایران

چکیده

در هیدرولوژی، فرآیند بارش - رواناب یکی از پیچیده‌ترین پدیده‌های غیرخطی است. پیش‌بینی رواناب در حوضه‌های فاقد آمار یکی از چالش‌ها در مدیریت منابع آب است. در این مطالعه کارایی مدل‌های یکپارچه هیدرولوژیک و روش‌های یادگیری ماشین در شبیه‌سازی دبی روزانه و ماهانه در حوضه آبخیز کبکیان که یکی از مهم‌ترین سرشاخه‌های رودخانه کارون است، بررسی شد. مدل‌های هیدرولوژیک یکپارچه AWBM، Sacramento، SIMHYD، SMAR و TANK و الگوریتم‌های مختلف روش درخت تصمیم، شبکه عصبی مصنوعی و رگرسیون بردار پشتیبان برای شبیه‌سازی دبی روزانه و ماهانه حوضه استفاده شد. سری‌های ماهانه و روزانه بارش، تبخیر و تعرق پتانسیل و دبی در دوره آماری 1401-1350 برای این منظور استفاده شدند. برای ارزیابی کارایی مدل‌ها نیز از ضرایب کارایی R2 ، NS و RMSE به کار گرفته شد. نتایج نشان داد که مدل‌های SMAR و AWBM بهترین کارایی را در شبیه‌سازی دبی روزانه در حوضه آبخیز کبکیان در مقایسه با سایر مدل‌های هیدرولوژیک استفاده شده داشته‌اند و مقادیر ضریب نش ساتکلیف این دو مدل در مرحله صحت سنجی به ترتیب 79/0 و 78/0 بوده که نشان از کارایی بسیار خوب این مدل‌ها در شبیه‌سازی دبی روزانه دارد. در سری‌های ماهانه نیز مدل‌های SMAR و AWBM با ضریب نش ساتکلیف به ترتیب 71/0 و 72/0 و ضریب تبیین 79/0 و 79/0 کارایی خوب داشته‌اند. در روش‌های یادگیری ماشین در مقیاس روزانه، روش درخت تصمیم با الگوریتم جنگل تصادفی با ضریب تبیین 61/0 بهترین کارایی را در شبیه‌سازی دبی داشته‌است. در شبیه‌سازی دبی ماهانه، الگوریتم جنگل تصادفی با ضریب تبیین 93/0 کارایی خیلی خوبی داشته‌است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Performance Comparison of Lumped Models and Machine Learning Approaches in Discharge Simulation

نویسندگان [English]

  • zohreh khorsandi Kouhanestani 1
  • Fatemeh Taatpour 2

1 Department of Nature engineering, Agricultural Sciences and natural Resources University of Khuzestan, Mollasani, Khuzestan, Iran

2 Ph.D. Candidate, Department of Rangeland and watershed management, Yazd university, Iran

چکیده [English]

Rainfall-runoff processes are among the most complex and nonlinear phenomena in hydrology. In water resources management, runoff forecasting faces challenges in ungauged watersheds.In this study, the efficiency of lumped models and machine learning methods was investigated in the Kabkian watershed, that is one of the principal branches of the Karun River. AWBM, Sacramento, SIMHYD, TANK, and SMAR Also, some algorithms in decision trees, artificial neural networks, and support vector regression were applied to simulate daily and monthly runoff in the Kabkian watershed. Monthly and daily discharge, precipitation, and potential evapotranspiration for the period between 1972 and 2022 were used,. The accuracy and efficiency of the methods were examined using R², the Nash-Sutcliffe coefficient, and RMSE. Results showed that SMAR and AWBM, in comparison to other lumped models, have the best efficiency in the simulation of daily discharge in the Kabkian watershed. The Nash-Sutcliffe coefficients for them in the test stage are 0.79 and 0.78, respectively, showing that these models have good efficiency in daily discharge simulation. Also, the SMAR and AWBM models' Nash-Sutcliffe coefficients are 0.71 and 0.72, respectively, and the R2 for the two models is 0.79 in the monthly time series. These values show that these models have good efficiency. In machine learning methods, in the daily series, the random forest algorithm's R2 is 0.61 and has the best efficiency in comparison to other methods. Also, in the monthly series, the random forest's R2 is 0.93, which illustrates good discharge simulation efficiency.

کلیدواژه‌ها [English]

  • Discharge simulation
  • Machine learning
  • Lumped model
  • Kabkian watershed
Ahmadi, F. (2020). Evaluation of support vector machine and adaptive neuro-fuzzy inference system performance in prediction of monthly river flow (case study: Nazlu chai and Sezar Rivers). Iranian Journal of Soil and Water Research, 51(3), 673-686.
Asadi, M., Fathzadeh, A., & Taghizadeh Mehrjerdi, R. (2017). The effects of the daily, monthly, and annual time scales on the suspended sediment load prediction. Hydrogeomorphology, 4(10), 121-143.
Basri, H. (2013). Development of rainfall-runoff model using tank model: problems and challenges in Province of Aceh, Indonesia. Aceh International Journal of Science and Technology, 2(1), 26-36.
Botsis, D., Latinopulos, P., & Diamantaras, K. (2011). Rainfall-runoff modeling using support vector regression and artificial neural networks. 12th International conference on environmental science and technology (CEST2011).
Boughton, W. (2004). The Australian water balance model. Environmental Modelling & Softwaer, 19(10), 943-956.
Breiman, L. (2001). Random forests. Machine learning, Springer, 45, pp. 5-32.
Burnash, R. J. (1973). A generalized streamflow simulation system: Conceptual modeling for digital computers. US Department of Commerce, National Weather Service, and State of California.
Chanklan, R., Kaoungku, N., Suksut, K., Kerdprasop, K., & Kerdprasop, N. (2018). Runoff prediction with a combined artificial neural network and support vector regression. International Journal of Machine Learning and Computing, 8(1), 39-43.
Chiew, F. H. S., Peel,M. C. , Western,  A. W. (2002). Application and testing of the simple rainfall-runoff model SIMHYD. In V. P. Singh, Frevert, D. (Ed.), Mathematical models of small watershed hydrology and applications, pp. 335–367.
Eryani, I. (2022). Sensitivity analysis in parameter calibration of the WEAP Model for integrated water resources management in Unda watershed. Civil Engineering and Architecture, 455-469.
Gautam, D. K. (2023). Performance Evaluation of Rainfall-Runoff Models for Predictions of Inflows to Bhumibol Reservoir in Thailand. Journal of Hydrology and Meteorology, 11(1), 1-9.
Goodarzi, M. R., Zahabiyoun, B., Massah Bavani, A. R., & Kamal, A. R. (2012). Performance comparison of three hydrological models SWAT, IHACRES and SIMHYD for the runoff simulation of Gharesou basin. Water and Irrigation Management, 2(1), 25-40. https://doi.org/10.22059/jwim.2012.25090
Grenier, M., Boudreault, J., Raymond, S., & Boudreault, M. (2024). Projected seasonal flooding in Canada under climate change with statistical and machine learning. Journal of Hydrology: Regional Studies, 53, 101754.
Haykin, S. (1999). Neural networks: A comprehensive foundation. NJ. Prentice-Hall Inc. Englewood Cliffs.
Hejazi, S. A., & Loghmannia, K. (2023). Temporal and spatial zoning of flood risk in Karganrood catchment using AWBM model and Fuzzy-ANP method. Physical Geography Research, 55(3), 71-88.
Joodi Hamzeabad, A. K., M, Akhavan, S., & Nozari, H. (2017). Evaluation of SWAT and SVM models to simulate the runoff of Lighvanchay river. Water and Soil Science, 26(4.1), 137-150.
Londhe, S. N., & Dixit, P. R. (2012). Forecasting stream flow using support vector regression and M5 model trees. International Journal of Engineering Research and Development, 2(5)12-15.
Mohammadi, M., Vagharfard, H., Mahdavi Najafabadi, R., Daneshkar Arasteh, P., & Nazemosadat, M. J. (2021). Rainfall-runoff Modelling of Coastal Watersheds near Hormuz Strait Using Data Mining. Iranian Journal of Soil and Water Research, 52 (2), 313-327.
Mohammadivand, M. R., Araghinejad, S., Ebrahimi, K., & Modaresi, F. (2019). Performance evaluation of AWBM, Sacramento and SimHyd models in runoff simulation of the Amameh Watershed using automatic calibration optimization method of Genetic Algorithm. Iranian Journal of Soil and Water Research, 50(7), 1759-1769.
Najibzade, N., Qaderi, K., & Ahmadi, M. M. (2020). Rainfall-runoff modelling using support vector regression and artificial neural network models (case study: SafaRoud Dam Watershed). Iranian Journal of Irrigation & Drainage, 13(6), 1709-1720.
O'connell, P., Nash, J., & Farrell, J. (1970). River flow forecasting through conceptual models part II-The Brosna catchment at Ferbane. Journal of hydrology, 10(4), 317-329.
Patel, A. B., & Joshi, G. S. (2017). Modeling of rainfall-runoff correlations using artificial neural network-A case study of Dharoi Watershed of a Sabarmati river basin, India. Civil Engineering Journal, 3(2), 78-87.
Reddy, N. M., Saravanan, S., & Abijith, D. (2023). Streamflow simulation using conceptual and neural network models in the Hemavathi sub-watershed, India. Geosystems and Geoenvironment, 2(2), 100-153.
Rezie, H., Montaseri, M., Montaseri, M., Rezie, H., Jabari, A., & Behmanesh, J. (2014). The comparison of AWBM and SimHyd models in rainfall-runoff modeling (Case study: Nazlouchy Catchment). Geography and Environmental Planning, 24(4), 155-168.
Rezaei Moghaddam, M. H., Mokhtari, D., & skandarialni, M. (2024). Comparative evaluation of a semi-distributed hydrological model with an integrated model to simulate the runoff of Gomanab Chai basin. Hydrogeomorphology, 11(40), 39-22. doi: 10.22034/hyd.2024.59474.1715
Rezvani, F. S., Ghorbani, K., Salarijazi, M., Rezaei Ghaleh, L., & Yazarloo, B. (2023). Comparative assessment of Sacramento, SMAR, and SimHyd models in long-term daily runoff simulation. Water and Soil Management and Modelling, 3(1), 279-297. https://doi.org/10.22098/mmws.2022.11794.1171
Samadi, M., Bahremand, A., & Fathabadi, A. (2019). The Boustan Dam monthly inflow forecasting using data-driven and ensemble models in the Golestan Province. Watershed Engineering and Management, 11(4), 1044-1058.
Taghi Sattari, M., Pal, M., Apaydin, H., & Ozturk, F. (2013). M5 model tree application in daily river flow forecasting in Sohu Stream, Turkey. Water Resources, 40, 233-242.
Vyas, S. K., Mathur, Y. P., Sharma, G., & Chandwani, V. (2016). Rainfall-Runoff Modelling: Conventional regression and Artificial Neural Networks approach. 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE),
Wang, E., Zhang, Y., Luo, J., Chiew, F. H., & Wang, Q. (2011). Monthly and seasonal streamflow forecasts using rainfall‐runoff modeling and historical weather data. Water Resources Research, 47(5).
Yonesi, H. A., Yousefi, H., Arshia, A., & Yarahmadi, Y. (2020). Runoff Rainfall Simulation using RRL Toolkit (Case Study: Rahim Abad Station-Silakhor Plain). Iranian Journal of Irrigation & Drainage, 14(4), 1348-1361.
Zarin, H., Moghaddamnia, A., Nam, D. J., & Mosaedi, A. (2013). Simulation of outlet runoff in ungauged catchments by using AWBM Rainfall-Runoff Model. Journal of Water and soil Conservation (Journal of Agricultural Sciences and natural Resources),, 20(2), 195-208.