نوع مقاله : پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد آب‌وهواشناسی، گروه جغرافیا، دانشگاه رازی

2 دانشیار آب‌وهواشناسی، گروه جغرافیا، دانشگاه رازی

10.22034/hyd.2024.62351.1747

چکیده

بخش عمده‌ای از تقاضای آب شیرین در جهان از طریق آب‌های زیرزمینی تأمین می‌شود. هرگونه ناهنجاری در آب‌های زیرزمینی به‌طور مستقیم بر زندگی انسان تأثیر می‌گذارد. از مهـم‌ترین عواملی که در نوسان سطح آب‌های زیرزمینی تأثیر به‌سزایی دارند، خشکسالی‌ها و ترسالی‌ها هستند. هدف از این مطالعه، بررسی رابطۀ بین شاخص بارش استانداردشده (SPI) به‌عنوان شاخص خشکسالی هواشناسی و شاخص منبع آب زیرزمینی (GRI) به‌عنوان شاخص خشکسالی هیدرولوژیک در دشت اسلام‌آباد غرب (استان کرمانشاه) در یک دورۀ 20ساله و پیش‌بینی وضعیت آیندۀ سطح آب زیرزمینی در منطقه است. مقادیر هر دو شاخص در مقیاس‌های زمانی 1، 3، 6، 9، 12، 18، 24 و 48 ماهه محاسبه شد. برای به‌دست‌آوردن رابطۀ بین دو شاخص، از ضریب همبستگی، یک بار در مقیاس‌های زمانی مختلف و بار دیگر با تأخیرهای زمانی 1 تا 12ماهه در شاخص GRI استفاده گردید. سپس داده‌های بارش آیندۀ دشت مورد نظر در یک دورۀ 20ساله با چهار مدل گزارش ششم (CMIP6) تحت سه سناریوی انتشار استخراج و با مدل SDSM ریزمقـیاس‌نمایی شد. نهایتاً داده‌های مدل CanSM5-CanOE انتخاب و برای پیش‌بینی وضعیت آیندۀ سطح آب زیرزمینی، وارد مدل رگرسیونی رابطۀ بارش با سطح آب شد. نتایج نشان داد که بیشترین ضریب همبستگی معنی‌دار بین شاخص SPI 48ماهه و شاخص GRI 48ماهه در شرایط تأخیر زمانی 12ماهه مشاهده می‌شود که نشان‌دهندۀ تأثیر بارش بر تغییرات سطح آب زیرزمینی در مقیاس‌های میان‌مدت و بلند‌مدت است. نتایج پیش‌بینی سطح آب زیرزمیـنی برای دورۀ آتی بیـانگر افت سطح آب به-ترتیـب به‌میزان 17/5، 02/6 و 08/8 متر تحت سه سناریوی SSP1-2.6، SSP2-4.5 و SSP5-8.5 است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the stability of the groundwater level in the Eslamabad-e Gharb plain (Kermanshah province) and evaluating the future situation with atmospheric general circulation models

نویسندگان [English]

  • Shokoofeh Esmaeili 1
  • Firouz Mojarrad 2

1 M. Sc. in Climatology, Geography Dept., Razi University

2 Associate Professor of Climatology, Geography Dept., Razi University

چکیده [English]

A major part of the fresh water demand in the world is provided through groundwater. Any abnormality in groundwater directly affects human. Droughts and wet periods are among the most important factors that have a significant effect on the fluctuation of the groundwater level. The purpose of this study is to investigate the relationship between the Standardized Precipitation Index (SPI) as a meteorological drought index and the Groundwater Resource Index (GRI) as a hydrological drought index in the Eslamabad-e Gharb plain (Kermanshah Province) in a 20-year period and predict the future state of the groundwater level. Both indices were calculated in time scales of 1, 3, 6, 9, 12, 18, 24 and 48 months. To obtain the relationship between two indices, the correlation coefficient was used once in different time scales and again with time delays of 1 to 12 months in the GRI index. Then, the future precipitation data of the plain in a 20-year period were extracted with four CMIP6 models under three scenarios, and then were downscaled with the SDSM model. Finally, the CanSM5-CanOE model was selected and its downscaled data were entered into the regression model of the relationship between precipitation and water level to predict the future state of the groundwater level. The results showed that the highest significant correlation coefficient between 48-month SPI and 48-month GRI values is observed at a time delay of 12 months, which indicates the effect of precipitation on changes in the groundwater level in medium and long-term scales. The forecast results of the groundwater level for the coming period indicate a water level drop of 5.17, 6.02 and 8.08 meters respectively under the three scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5.

کلیدواژه‌ها [English]

  • GRI
  • SPI
  • Groundwater level
  • Atmospheric general circulation models
  • Eslamabad-e Gharb plain
  • West of Iran
 
Akbari Chegani, N. (2017). Spatial analysis of the quality of the residential environment in the city of Eslamabad-e Gharb. M.Sc. Thesis in urban planning, Hakim Sabzevari University.
Alizadeh, A. (2014). Principles of applied hydrology. 40th edition, Mashhad: Imam Reza University Press.
Behremand, A., Hamdami, Gh., & Saniei, I. (2014). Analysis of the trend of long-term changes in rainfall and discharge in the west of Lake Urmia. Journal of Watershed Management Research, 4 (8), 43-57.
Baik, J., Park, J., Hao, Y., & Choi, M. (2022). Integration of multiple drought indices using a triple collocation approach. Stochastic Environmental Research & Risk Assessment, 36 (4), 1177-1195. https://doi.org/10.1007/s00477-021-02044-7
Bak, B., & Kubiak-Wojcicka, K. (2016). Assessment of Meteorological and Hydrological Drought in Torun (Central Poland Town) in 1971-2010 Based on Standardized Indicators, 3rd International Conference-Water Resources and Wetlands, (pp. 164-170). Tulcea, Romania.
Dehghani, R., Chamanpira, R., & Veyskarami, I. (2024). Investigating the Effects of Climate Change on Underground Water Sources (Case Study: Khorram Abad plain). Iranian Water Researches Journal, 18 (2). doi: 10.22034/iwrj.2024.14796.2607
Dibike, Y. B., & Coulibaly, P. (2005). Hydrologic Impact of Climate Change in the Saguenay Watershed: Comparison of Downscaling Methods and Hydrologic Models. Journal of Hydrology, 307 (1-4), 145-163. https://doi.org/10.1016/j.jhydrol.2004.10.012
Diodato, N., Bellocchi, G. (2024). Millennium-scale changes in the Atlantic Multidecadal Oscillation influenced groundwater recharge rates in Italy. Commun Earth Environ, 5, 56, 1-13. https://www.nature.com/articles/s43247-024-01229-6
Feng, K., Su, x., Zhang, G., Javed, T., & Zhang, Z. (2020). Development of a new integrated hydrological drought index (SRGI) and its application in the Heihe River Basin, China. Theoretical and Applied Climatology, 141(10), 43-59. https://doi.org/10.1007/s00704-020-03184-6
Ghosh, A., & Bera, B. (2023). Estimation of groundwater level and storage changes using innovative trend analysis (ITA), GRACE data, and google earth engine (GEE), Groundwater for Sustainable Development, 23, 101003. https://doi.org/10.1016/j.gsd.2023.101003
Gumus, V. (2023). Evaluating the effect of the SPI and SPEI methods on drought monitoring over Turkey. Journal of Hydrology, 626, Part B, 130386. https://doi.org/10.1016/j.jhydrol.2023.130386
Guttman, N. B. (1999). Accepting the Standardized Precipitation Index: A Calculation Algorithm. Journal of the American Water Resources Association, 35 (2), 311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
Heydari Aghagol, M., Ghoami, E., & Rostami Barani, H. R. (2017). Finding potential groundwater resources using fuzzy logic (Case Study: South Khorasan province). Iran-Water Resources Research, 13 (1), 211-215.
Jabraili Andarian, N., Nadiri, A. A., & Gharekhani, M. (2024). Investigating the quantity and quality of groundwater and its effect on the hydrogeochemistry of the Azarshahr plain aquifer and identifying the possible source of contamination. Hydrogeomorphology, 11(38), 60-79. doi: 10.22034/hyd.2024.58969.1710
Jung, H., Won, J., Kang, S., & Kim, S. (2022). Characterization of the Propagation of Meteorological Drought Using the Copula Model. Water, 14 (20), 3293. https://doi.org/10.3390/w14203293
Karimirad, I., Ebrahimi, K., & Araghinejad, S. (2015). Investigation of climate variability impacts on multilayer aquifers (Case study: Gorgan plain). Water and Irrigation Management, 5 (2), 261-275. https://doi.org/10.22059/jwim.2015.57448
Khorani, A., & khajeh, M., (2014). An investigation on the coincidence between trend of drought and groundwater levels decline (A Case Study: Plain of Darab). MJSP, 18 (2) :57-80.
Kubiak-Wojcicka, K., and Bak, B., (2018). Monitoring of Meteorological and Hydrological Droughts in the Vistula Basin (Poland). Environmental Monitoring and Assessment, Vol. 190, pp. 1-16. https://doi.org/10.1007/s10661-018-7058-8
Kubicz, J., & Bak, B. (2019). The Reaction of Groundwater to Several Months’ Meteorological Drought in Poland. Polish Journal of Environmental Studies, 28 (1), 187-195. https://doi.org/10.15244/pjoes/81691
Kumar, P. (2022). Extreme droughts and corresponding Summer Monsoon: A Case Study of 2009 Indian Drought. MAUSAM, 74 (1): 83-104. https://doi.org/10.54302/mausam.v74i1.5329
Kumar, A., Pal, L., & Yadav, S. M. (2017). Investigating Relationship between Standardized Precipitation Index and Grace-Derived Groundwater Anomalies in Madhya Pradesh, 22nd International Conference on Hydraulics, Water Resources & Coastal Engineering (HYDRO-2017), (pp. 1-8). Ahmedabad, India.
Lorenzo, M. N., Pereira, H., Alvarez, I., & Dias J. M. (2024). Standardized Precipitation Index (SPI) evolution over the Iberian Peninsula during the 21st century. Atmospheric Research, 297: 107132. https://doi.org/10.1016/j.atmosres.2023.107132
Maghami Moghim, G., & Taghipour, A. A. (2022). Investigating the Effective Factors on Changing Groundwater Levels of Safi Abad Plain of Esfarayneh. Desert Ecosystem Engineering, 8 (22), 27-42. doi: https://doi.org/10.22052/deej.2018.7.22.11
Maleki, S., Nourani, V., & Najafi, H. (2024). New Z-Number-Based Method for Specialized Groundwater Vulnerability Assessment (Case studies: The Ardabil and Qorveh-Dehgolan plains). Hydrogeomorphology, 11(38), 98-122. doi: 10.22034/hyd.2024.59132.1713
Mendicino, G., Senatore, A., & Versace, P. (2008). A Groundwater Resource Index (GRI) for Drought Monitoring and Forecasting in a Mediterranean Climate. Journal of Hydrology, 357 (3-4), 282-302. https://doi.org/10.1016/j.jhydrol.2008.05.005
Meseguer-Ruiz, O., Serrano-Notivoli, R., Aránguiz-Acuña, A., Fuentealba, M., Nuñez-Hidalgo, I., Sarricolea, P., & Garreaud, R. (2023). Comparing SPI and SPEI to detect different precipitation and temperature regimes in Chile throughout the last four decades. Atmospheric Research, 297 (13):107085. https://doi.org/10.1016/j.atmosres.2023.107085
Mohammadi, S., Naseri, F., & Nazaripour, H. (2018). Investigating the temporal variation and meteorological drought effect on groundwater resources in Kerman plain using SPI and GRI indices. Iranian journal of Ecohydrology, 5 (1), 11-22. doi: https://doi.org/10.22059/ije.2017.225328.434
Niguse Dejene, I., Kabite Wedajo, G., Bayissa, Y. A., Melese Abraham, A., & Getahun Cherinet, K. (2023). Satellite rainfall performance evaluation and application to monitor meteorological drought: a case of Omo‑Gibe basin, Ethiopia. Natural Hazards, Published Online 12 August 2023. https://doi.org/10.1007/s11069-023-06127-2
Šebenik, U., Brilly, M., & Šraj, M. (2017). Drought Analysis Using the Standardized Precipitation Index (SPI). Acta Geographica Slovenica, 57 (1), 31-49. https://doi.org/10.3986/AGS.729
Shekari, M. R., Sadatinejad, S. J., & Vali, A. A. (2022). Relationship between meteorological and hydrogeological drought in an arid area: (a case study of Sheshdeh and Gharebolagh plains). Desert Ecosystem Engineering, 6 (14), 79-90. https://doi.org/10.22052/6.14.79
Tladi T. M., Ndambuki, J. M., & Salim, R.W. (2022). Meteorological drought monitoring in the Upper Olifants sub-basin, South Africa. Physics and Chemistry of the Earth Parts A/B/C, 128 (1-2),103273. https://doi.org/10.1016/j.pce.2022.103273
Uddameri, V., Singaraju, S., & Hernandez, E. A. (2019). Is Standardized Precipitation Index (SPI) a Useful Indicator to Forecast Groundwater Droughts? -Insights from a Karst Aquifer. Journal of the American Water Resources Association, 55 (1), 70-88. https://doi.org/10.1111/1752-1688.12698
Wetherald, R. T., & Manabe, S. (2002). Simulation of Hydrologic Changes Associated with Global Warming. Journal of Geophysical Research, 107 (D19), 1-15. https://doi.org/10.1029/2001JD001195
Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM – A Decision Support tool for the Assessment of Regional Climate Change Impacts. Environmental Modelling and Software, 17 (2), 145-157. https://doi.org/10.1016/S1364-8152(01)00060-3
Zargar, A., Sadiq, R., Naser, B., & Khan, F. L. (2011). A Review of Drought Indices. Environmental Reviews, 19 (1), 333-349. https://doi.org/10.1139/a11-013