نوع مقاله : پژوهشی

نویسندگان

1 استادیارگروه آموزش جغرافیا، دانشگاه فرهنگیان، تهران، ایران

2 مربی گروه آموزش علوم تجربی، دانشگاه فرهنگیان، تهران، ایران

10.22034/hyd.2024.62117.1743

چکیده

خلیج گرگان، یکی از مهم‌ترین تالاب‌های شمالی ایران است که تغییرات سطح آب آن پیامدهای زیست‌محیطی متعددی برای مناطق اطراف دارد. مطالعه حاضر به بررسی تطبیقی تغییرات سطح آب خلیج گرگان با استفاده از شاخص های طیفی آب می پردازد. مطالعات گذشته، تغییرات سطح آب خلیج گرگان را قابل توجه نشان می‌دهند. این تغییرات باعث خسارات زیادی از نظر اکولوژیکی و اقتصادی شده است که نیاز مبرم به راهبردهای موثر در مدیریت را برجسته می سازد. در این پژوهش با استفاده از بررسی تطبیقی بین شاخص های طیفی سطح آب(NDWI، MNDWI، AWEI و NDPI) با کمک تصاویر لندست 5 و 8 برای پایش تغییرات سطح آب خلیج گرگان استفاده شده است. یافته‌های این پژوهش  نشان می‌دهند که شاخص MNDWI با میانگین RMSE 66/21، دقیق‌ترین روش برای استخراج سطح آب از تصاویر لندست است. درخروجی شاخصMNDWI مساحت سطح آب استخراج‌شده برای سال‌های (1990، 2000، 2010 و 2020) افزایش2384 هکتاری بین 1990 تا 2000، کاهش1488 هکتاری بین 2000 تا 2010 و کاهش 11080 هکتاری بین 2010 تا 2020 مشاهده می شود. کاهش نگران‌کننده 11080 هکتاری سطح آب بین سال‌های 2010 تا 2020، بر ضرورت تلاش‌های بیشتر برای پایش و مدیریت سطح آّب خلیج گرگان تأکید می‌کند. این مطالعه بر پتانسیل تصاویر ماهواره‌ای و شاخص‌های طیفی آب، به‌ویژه شاخص MNDWI، به عنوان ابزارهای ارزشمند برای پایش و مدیریت مؤثر سطح آب در خلیج گرگان تأکید می‌کند .نهایتا، نتایج این پژوهش می تواند به عنوان یک راهنمای علمی برای مدیرت و برنامه ریزی تغییرات مساحت سطح آب خلیج گرگان مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparative Analysis of Water Level Extraction Methods for Gorgan Bay and Its Monitoring Using Multi-Temporal Satellite Data

نویسندگان [English]

  • Hamid Amoonia 1
  • Mohammadreza Yousefi Roshan 1
  • Mohammad Dِaymevar 2

1 Assistant Professor, Department of Geography Education, Farhangian University, Tehran, Iran

2 Instructor of the Educational Group of ExperimentalSciences ,Department of Science Education, Farhangian University, Tehran, Iran

چکیده [English]

Gorgan Bay, one of the most important wetlands in northern Iran, has experienced significant water level fluctuations with severe environmental consequences for surrounding areas. This study employs a comparative analysis of spectral water indices to monitor water level changes in Gorgan Bay. Previous studies have documented substantial water level variations, leading to substantial ecological and economic losses, highlighting the urgent need for effective management strategies. The present research utilizes Landsat 5 and 8 images to investigate water level changes in Gorgan Bay through a comparative assessment of spectral water indices (NDWI, MNDWI, AWEI, and NDPI). The findings reveal that MNDWI outperforms other indices, with an average RMSE of 21/66, for water extraction from Landsat imagery. MNDWI-derived water area estimates indicate an increase of 2384 hectares between 1990 and 2000, a decrease of 1488 hectares between 2000 and 2010, and a further decrease of 11080 hectares between 2010 and 2020. The alarming 11080-hectare decline in water area from 2010 to 2020 underscores the need for intensified efforts in Gorgan Bay's water level monitoring and management. This study emphasizes the potential of satellite imagery and spectral water indices, particularly MNDWI, as valuable tools for effective water level monitoring and management in Gorgan Bay. The results can serve as a scientific guide for managing and planning water level changes in Gorgan Bay.

کلیدواژه‌ها [English]

  • Water Level Changes
  • spectral water indices
  • Satellite Data
  • Landsat Imagery Gorgan Bay
Abdollahi Kakroodi, A. A. (2018). Caspian Sea fluctuations and their impact on its southeastern coasts. Quantitative Geomorphological Research, 2(3), 33–44. [In Persian]
Asghari, S.,Jalilyan, R., Pirozineghad, N., Madadi, A.,& Yadeghari, M.(2020). Evaluation of Water Extraction Indices Using Landsat Satellite Images (Case Study: Gamasiab River of Kermanshah). Journal of Applied researches in Geographical Sciences, 20(58), 53–70.[In Persian]
Bhunia, G. S. (2021). Assessment of automatic extraction of surface water dynamism using multi-temporal satellite data. Earth Science Informatics, 14(3), 1433–1446.
Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sensing, 8(4).
Elsahabi, M., Negm, A., & Hamid M.H. El Tahan, A. (2016). Performances Evaluation of Surface Water Areas Extraction Techniques Using Landsat ETM+ Data: Case Study Aswan High Dam Lake (AHDL). Procedia Technology, 22, 1205–1212.
Elsayed, S., Gad, M., Farouk, M., Saleh, A. H., Hussein, H., Elmetwalli, A. H., Elsherbiny, O., Moghanm, F. S., Moustapha, M. E., Taher, M. A., Eid, E. M., & Abou El-Safa, M. M. (2021). Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt. Sustainability, 13(18).
Faizollahi Pour, M. (2024). Changes in the areas of western Afghanistan dams and their impact on the water resources of Zabol's Chahnimeh over a 30-year period using Landsat 5 TM and Landsat 8 OLI and TIRS sensors. Hydrogeomorphology [In Persian]. https://doi.org/10.22034/hyd.2024.59359.1712
Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35.
Fisher, A., Flood, N., & Danaher, T. (2016). Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175, 167–182.
Gao, B. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.
Gao, H. (2015). Satellite remote sensing of large lakes and reservoirs: From elevation and area to storage. WIREs Water, 2(2), 147–157.
Gautam, S., & Singhai, J. (2024). Critical review on deep learning methodologies employed for water-body segmentation through remote sensing images. Multimedia Tools and Applications, 83(1), 1869–1889.
Gonsamo, A., Chen, J. M., Price, D. T., Kurz, W. A., & Wu, C. (2012). Land surface phenology from optical satellite measurement and CO2 eddy covariance technique. Journal of Geophysical Research: Biogeosciences, 117(G3).
Haibo Y, Wang Z, Zhao H, Guo Y.(2011).Water body Extraction Methods Study Based on RS and GIS . 3rd international conference on environmental science and information application technology (ESIAT 2011). Procedia Environ Sci 10(2011):2619–2624
Hamzeh, S., & Torabi, A. (2021). Investigating changes in the water area of Gorgan Bay and its relationship with rainfall changes and Caspian Sea water levels using remote sensing data. Ecohydrology, 8(2), 475–484.[In Persian]
Huang, C., Chen, Y., Zhang, S., & Wu, J. (2018). Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Reviews of Geophysics, 56(2), 333–360.
Jafari, A., Niksokhan, M., & Majdzadeh Tabatabaei, M. (2021). Investigating the flow pattern in Gorgan Bay considering water level changes of the Caspian Sea using a numerical model. Environmentology, 47(3), 361–378. [In Persian]
Jawak, S. D., Kulkarni, K., & Luis, A. J. (2015). A Review on Extraction of Lakes from Remotely Sensed Optical Satellite Data with a Special Focus on Cryospheric Lakes. Advances in Remote Sensing, 4(3).
Khoshravan, H., Alinejad-Tabrizi, T., & Naqinezhad, A. (2022). Hydromorphology and environmental restoration of Gorgan Bay, the Southeast Caspian Sea. Caspian Journal of Environmental Sciences, 20(1), 17–28.
Khoshravan, H., Naqinezhad, A., Alinejad-Tabrizi, T., & Yanina, T. (2019). Gorgan Bay environmental consequences due to the Caspian Sea rapid water level change. Caspian Journal of Environmental Sciences, 17(3), 213–226.
Khoshravan, H., Poursafari Yekrang, P., & Alemi Safaval, P. (2023). Caspian rapid Sea level fluctuation and intensity of shorelines displacement in the Gomishan Lagoon. International Journal Of Coastal, Offshore And Environmental Engineering(Ijcoe), 8(2), 48–55.
Khoshrovan, H. (2020). Spatial and temporal changes in the coastal habitats of Gorgan Bay under the influence of Caspian Sea fluctuations. Scientific-Research Quarterly of Geographic Information "Sepehr", 29(115), 127–138. [In Persian]
Khosravian, M., Entezari, A., Rahmani, A., & Baaghdeh, M. (2018). Monitoring water level changes in Parishan Lake using remote sensing indices. Hydrogeomorphology, 4(13), 99–120. [In Persian]
Lahijani, H. A. K., Azizpour, J., Arpe, K., Abtahi, B., Rahnama, R., Ghafarian, P., Hamzeh, M. A., Hamzehpour, A., Penchah, M. M., & Mahmoudof, S. M. (2023). Tracking of sea level impact on Caspian Ramsar sites and potential restoration of the Gorgan Bay on the southeast Caspian coast. Science of The Total Environment, 857, 158833.
Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., & Zhang, X. (2013). A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sensing, 5(11), 5530–5549.
Najafiha, B., & Boungarian, V. (2019). The impact of sea level fluctuations on the geomorphology and morphodynamics of the Caspian Sea coasts (Case study: Gorgan Bay). Quarterly Journal of Earth Sciences, 29(113), 35–44.
Nandi, D., CHowdhury, R., Mohapatra, J., Mohanta, K., & Ray, D. (2018). International Journal of Scientific Research in Science, Engineering and Technology,IJSRSET, 4(4), 498-216
Sarp, G., & Ozcelik, M. (2017). Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. Journal of Taibah University for Science, 11(3), 381–391.
Sharabati, S. (2022). Investigating the effects of the Caspian Sea water level decline on Gorgan Bay. Journal of Aquaculture Exploitation and Breeding, 11(4), 1–22.[In Persian]
Sharabati, S., & Qanqarmeh, A. (2015). Forecasting the impact of long-term water level decline of the Caspian Sea on the life of Gorgan Bay. Environmental Science and Technology, 10(4), 45. [In Persian]
Tymków, P., Jóźków, G., Walicka, A., Karpina, M., & Borkowski, A. (2019). Identification of Water Body Extent Based on Remote Sensing Data Collected with Unmanned Aerial Vehicle. Water, 11(2), Article 2.
Wang, C., Chen, J., Wu, J., Tang, Y., Shi, P., Black, T. A., & Zhu, K. (2017). A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sensing of Environment, 196, 1–12.
Xu, D., Wang, C., Chen, J., Shen, M., Shen, B., Yan, R., Li, Z., Karnieli, A., Chen, J., Yan, Y., Wang, X., Chen, B., Yin, D., & Xin, X. (2021). The superiority of the normalized difference phenology index (NDPI) for estimating grassland aboveground fresh biomass. Remote Sensing of Environment, 264, 112578.
Xu, Y., Lin, J., Zhao, J., & Zhu, X. (2021). New method improves extraction accuracy of lake water bodies in Central Asia. Journal of Hydrology, 603, 127180.
Yang X, Qina Q, Grussenmeyer P, Koehl M .(2018). Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sens Environ 219:259270
Yousefi, H., Torabi Podeh, H., Haghighizadeh, A., Samadi, A., Arshia, A., & Yar Ahmadi, Y. (2022). Monitoring changes in Zarivar Lake, Kurdistan using Normalized Difference Spectral Indices and Landsat images in the Google Earth Engine system. Hydrogeology, 6(2), 30–41.[In Persian]