نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری آب و هواشناسی، دانشگاه تبریز، کارشناس هواشناسی سینوپتیک، سازمان هواشناسی کشور، اداره کل هواشناسی استان آذربایجان شرقی

2 استاد گروه آب و هواشناسی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

چکیده

تغییر اقلیم آینده و اثرات ناشی از آن یکی از مهم‌ترین دغدغه‌های بشر بخصوص در سال‌های اخیر می‌باشد. برای مقابله و سازگاری با تغییر اقلیم آگاهی از وضعیت اقلیم آینده ضروری می‌باشد. لذا در تحقیق حاضر برای بررسی اقلیم آینده حوضه آبریز دریاچه ارومیه دمای حداکثر، دمای حداقل، بارش و خشکسالی حوضه برای دوره 2099-2015 با استفاده از مدل اقلیمی NorESM2-MM تحت سناریوهای انتشار SSP1-2.6 و SSP5-8.5 مورد پیش‌یابی قرار گرفتند. ریزمقیاس‌نمایی خروجی مدل با استفاده از روش نگاشت چندک انجام گرفت. پس از ارزیابی دقت مدل اقلیمی در شبیه‌سازی دوره پایه پارامترهای مورد مطالعه در سطح ایستگاهی برای دوره آینده تولید گردیدند. ارزیابی نتایج حاصل نشان دادند که: دمای متوسط حداقل و حداکثر حوضه تحت سناریوی بدبینانه (SSP5-8.5) تا پایان قرن روند صعودی و تحت سناریوی خوش‌بینانه (SSP1-2.6) تا سال 2075 روند صعودی و بعد از آن روند نزولی دارند. متوسط دمای حداکثر و حداقل حوضه در آینده نزدیک به ترتیب (0/1 تا 8/1) و (1/1 تا 8/1) درجه سلسیوس و در آینده دور (5/1 تا 8/4) و (3/1 تا 3/4) درجه سلسیوس افزایش خواهند یافت. بارش سالانه در دوره آینده روند معنی‌داری ندارد، اما متوسط بارش حوضه در سناریوی خوش-بینانه در آینده نزدیک 5/16 درصد و در آینده دور 9/8 درصد افزایش و تحت سناریوی بدبینانه در آینده نزدیک 8/1 درصد و در آینده دور 2/7 درصد افزایش خواهد داشت. براساس شاخص SPEI در دوره آینده تحت سناریوی خوش‌بینانه خشکسالی متوسط روند صعودی و خشکسالی شدید روند نزولی و تحت سناریوی بدبینانه خشکسالی روند صعودی خواهد داشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Projection and Evaluation of the Trend of Temperature, Precipitation and Drought in Urmia Lake Catchment

نویسندگان [English]

  • Firooz Abdolalizadeh 1
  • ََAli Mohammad Khorshiddoust 2
  • Saeed Jahanbakhsh 2

1 PhD Student of climatology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Meteorologist, I.R. Iran Meteorological Organization, East Azerbaijan Bureau of Meteorology

2 Professor of climatology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

چکیده [English]

In the current research, to investigate the future climate of the Urmia Lake catchment, the maximum and minimum temperature, rainfall and drought in the basin were projected for the period of 2015-2099 using NorESM2-MM climate model under the scenarios of SSP. The downscaling output of the model was done using the quantile mapping method and their accuracy was evaluated in the simulation of the base period (1990-2014) using the monthly diagram and RMSE and NRMSE indicators. The evaluation of the results showed that: the minimum and maximum temperature of the basin under the pessimistic scenario (SSP5-8.5) until the end of the century and under the optimistic scenario (SSP1-2.6) until 2075 have an ascending trend and then a descending trend. Average maximum and minimum temperature of the basin in the near future (1.0 to 1.8) and (1.1 to 1.8) ℃ and in the far future (1.5 to 4.8) and (1.3 to 4.3) ℃ will increase. The annual rainfall in the future period does not have a significant trend, but the average rainfall of the basin in the optimistic scenario will increase by 16.5% in the near future and 8.9% in the far future and in the pessimistic scenario will increase by 1.8% in the near future and 7.2% in the far future. According to the SPEI index, in the future period, under the optimistic scenario, moderate drought will have an ascending trend, severe drought will have a descending trend, and under the pessimistic scenario, the drought will have a descending trend.

کلیدواژه‌ها [English]

  • Climate Change
  • CMIP6 models
  • Quantile Mapping
  • Innovative Trend Analysis
  • SPEI
Abramowitz, M., & Stegun, I. A. (1965). With formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series. e, 55, 953.
Boé, J., Terray, L., Habets, F., & Martin, E. (2007). Statistical and dynamical downscaling of the Seine basin climate for hydro‐meteorological studies. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(12), 1643-1655. https://doi.org/10.1002/joc.1602
Brian, A., Hamida, N., Hassen, B., Rizwan, K., Vedaste, I., Kenny T.C. Lim Kam Sian, Victor, O. (2021). Evaluation and projection of mean surface temperature using CMIP6 models over East Africa, Journal of African Earth Sciences 181, 104226. https://doi.org/10.1016/j.jafrearsci.2021.104226
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016, 2016
Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., Tignor, M., Midgley, P.M., IPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 582.
Ghalenovi, M.A., Babaei pahnehkolai, S.F., Darzi Naftchali, A., Javid Sabbaghian, R. (2019). Analysis and forecasting drought, evapotranspiration and green water changes in Urmia Lake Basin under climate change. Arid Regions Geographic Studies 9 (35), 60-73
URL: http://journals.hsu.ac.ir/jarhs/article-1-1456-fa.html
Goudarzi, M., Salahi, B., & Hoseini, A. (2015). Study on Effects of Climate Changes on Surface Runoff Changes Case Study. Urmia Lake Basin. Iranian journal of Ecohydrology 2(2), 175-189. https://doi.org/10.22059/ije.2015.56152
Goudarzi, M., Salahi, B., Hosseini, S.A. (2018). Estimation of Evapotranspiration Rate Due to Climate Change in the Urmia Lake Basin. Iranian Journal of Watershed Management Science and Engineering, 12 (41), 1-12. URL: http://jwmsei.ir/article-1-514-fa.html
Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48(4). https://doi.org/10.1029/2010RG000345
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
Li, S. Y., Miao, L. J., Jiang, Z. H., Wang, G. J., Gnyawali, K. R., Zhang, J., ... & Li, C. (2020). Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099. Advances in Climate Change Research, 11(3), 210-217. https://doi.org/10.1016/j.accre.2020.09.003
Li, Y., Yan, D., Peng, H., & Xiao, S. (2021). Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmospheric Research, 253, 105406. https://doi.org/10.1016/j.atmosres.2020.105406
Li, F.P., Zhang, G.X., Dong, L.Q. (2013). Studies for impacts of climate change on hydrology and water resources. Sci. Geogr. Sin. 33 (4), 457–464.
Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620. https://doi.org/10.1126/science.1204531
Öztopal, A., & Şen, Z. (2017). Innovative trend methodology applications to precipitation records in Turkey. Water Resources Management, 31(3), 727-737. https://doi.org/10.1007/s11269-016-1343-5
Piani, C., Haerter, J.O., & Coppola, E. (2010). Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology, 99, 187-192. https://doi.org/10.1007/s00704-009-0134-9
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., ... & Fang, J. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43-51. https://doi.org/10.1038/nature09364
Salahi, B., Goudarzi, M., Hosseini, S.A. (2017). Prediction of the Climate Parameters in the Urmia Lake Basin during 2011-2030. Iranian Journal of Watershed Management Science and Engineering 11 (37), 47-56.
URL: http://jwmsei.ir/article-1-382-fa.html
Samantaray, A. K., Ramadas, M., & Panda, R. K. (2022). Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble. Agricultural Water Management, 266, 107568. https://doi.org/10.1016/j.agwat.2022.107568
Şen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9), 1042-1046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556
Şen, Z. (2014). Trend identification simulation and application. Journal of Hydrologic Engineering, 19(3), 635-642. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000811
Sung, H.M., Kim, J., Shim, S. et al., (2021), Climate Change Projection in the Twenty-First Century Simulated by NIMS-KMA CMIP6 Model Based on New GHGs Concentration Pathways. Asia-Pacific J Atmos Sci 57, 851–862. https://doi.org/10.1007/s13143-021-00225-6 
Themeßl, M. J., Gobiet, A., & Heinrich, G. (2012). Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449-468. https://doi.org/10.1002/joc.2168
Van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G., Kram, T., Krey, V., Lamarque, J-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S., Rose, S. (2011). The representative concentration pathways: an overview. Climatic Change 109:5-31. https://doi.org/10.1007/s10584-011-0148-z
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic change, 62(1-3), 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang, J., ... & Uddin, M. J. (2020). Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 246, 105111. https://doi.org/10.1016/j.atmosres.2020.105111