نوع مقاله : پژوهشی

نویسندگان

1 استادیار آبیاری و زهکشی دانشگاه لرستان

2 دانشجوی دکتری، گروه مهندسی آب، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در این پژوهش به منظور شبیه سازی سطح آب زیر زمینی دشت خرم‌آباد عملکرد مدل‌های هیبریدی رگرسیون بردار پشتیبان-موجک، رگرسیون بردار پشتیبان خفاش، رگرسیون بردار پشتیبان- گرگ خاکستری برای چهار چاه پیزومتری سراب پرده، ناصروند، سالی و پل بابا حسین که دارای آمار همگن و فاقد داده‌های مفقود بودند انجام شد. جهت مدلسازی، پارامترهای بارش (P)، دما (T) و سطح آب زیرزمینی (H) و برداشت از منابع آب (q) در مقیاس ماهانه بعنوان ورودی مدل‌ها در طی دوره آماری 1400-1380 به کار برده شد. لازم به ذکر است جهت مدلسازی 80 درصد داده ها برای آموزش و 20 درصد باقی مانده جهت تست، بصورت تصادفی، که گستره وسیعی از انواع داده ها را پوشش دهد، انتخاب شد. معیارهای ضریب همبستگی (R)، ریشه میانگین مربعات خطا (RMSE)، میانگین قدر مطلق خطا (MAE) و ضریب نش ساتکلیف (NS) برای ارزیابی و نیز مقایسه عملکرد مدل‌ها مورد استفاده قرار گرفت. نتایج نشان داد ساختار ترکیبی در کلیه مدل‌های مورد بررسی عملکرد بهتری نسبت به سایر ساختارها ارائه می‌دهد. همچنین نتایج نشان داد مدل رگرسیون بردار پشتیبان موجک طبق شاخص‌های ارزیابی، در چاه پیزومتری سراب پرده دارای مقادیر R=0.978، RMSE=0.221 m، MAE=0.011 m،0.985 NS= و نیز در چاه پیزومتری ناصروند دارای مقادیر R=0.981، RMSE=0.168 m، MAE=0.008 m،0.991 NS= و همچنین چاه پیزومتری سالی دارای مقادیر R=0.980، RMSE=0.186 m، MAE=0.010 m،0.986 NS= و در نهایت چاه پیزومتری پل بابا حسین دارای مقادیر R=0.985، RMSE=0.101 m، MAE=0.007 m،0.995 NS= می باشد، نسبت به سایر مدل‌ها از توانایی مطلوبی برخوردار است.

کلیدواژه‌ها

عنوان مقاله [English]

Analysis and evaluation of hybrid meta-exploration models in groundwater level simulation

نویسندگان [English]

  • Ali Heidar Nasrolahi 1
  • yaser sabzevari 2

1 Assistant Professor of Irrigation and Drainage, Lorestan University

2 Ph.D. student, Department of Water Engineering, Isfahan University of Technology, Isfahan, Iran

چکیده [English]

In this research, in order to simulate the underground water level of Khorramabad plain, the performance of hybrid models of bat support vector regression, bat support vector regression, gray wolf support vector regression for four piezometric wells of Sarab Pardah, Naservand, Sally and Baba Hossein Bridge, which have homogeneous statistics. and it was done without missing data. For modeling, rainfall (P), temperature (T) and underground water level (H) and withdrawal from water resources (q) have been used in the monthly report of the models during the period of 1380-1400. It should be noted that for modeling, 80% of the data is chosen for training and the remaining 20% ​​for testing, randomly, which covers a wide range of data types. Correlation coefficient (R), root mean square error (RMSE), mean absolute value of error (MAE) and Sutcliffe coefficient of vitality (NS) were used to evaluate and compare the performance of the models. The results showed that the combined structure provides better performance than other structures in all the investigated models. Also, the results showed that the wavelet support vector regression model based on the evaluation indicators, in the piezometric well of Sarab Pardah has R=0.978, RMSE=0.221 m, MAE=0.011 m, NS=0.985 and also in the piezometric well of Naservand has R=0.981 . 010 m, NS=0.986 and finally piezometric well, Baba Hossein Bridge has 5 R=0.98, RMSE=0.101 m, MAE=0.007 m, NS=0.995, compared to other models, it can be used to create a favorable result.

کلیدواژه‌ها [English]

  • decline of water resources
  • Khorramabad
  • simulation
  • hybrid model
  • Khoramabad
  1. Baba Ali, H.R. (2021). Simulating the underground water level of the Selesh plain of Lorestan province using modern meta-exploration algorithms. Hydrogeomorphology, 8(28), 145-162. doi: 10.22034/hyd.2021.47162.1598. (in Farsi)
  2. Bahmani, R., & Ouarda, T. B. (2021). Groundwater level modeling with hybrid artificial intelligence techniques. Journal of Hydrology595, 125659.‏
  3. Basak, D., Pal, S., & Patranabis, D.C. (2007). Support vector regression. Neural Inf Process, 11(2), 203-225.
  4. Dehghani, R., & Poudeh, H. T. (2021). Applying hybrid artificial algorithms to the estimation of river flow: a case study of Karkheh catchment area. Arabian Journal of Geosciences14(9), 1-19.‏
  5. Hamel, L. H. (2011). Knowledge discovery with support vector machines. John Wiley & Sons.‏
  6. Heydari, A. & Jabari, I. (2021). Simulating Marvdasht underground water level and checking forecasting scenarios using MODFLOW mathematical code. Hydrogeomorphology, 8(29), 172-149. doi: 10.22034/hyd.2022.49139.1612. (in Farsi)
  7. Kisi, O., Karahan, M. E., & Şen, Z. (2006). River suspended sediment modelling using a fuzzy logic approach. Hydrological Processes: An International Journal20(20), 4351-4362.‏
  8. Lam, Q. D., Meon, G., & Pätsch, M. (2021). Coupled modelling approach to assess effects of climate change on a coastal groundwater system. Groundwater for Sustainable Development14, 100633.‏
  9. Misra, D., Oommen, T., Agarwal, A., Mishra, S. K., & Thompson, A. M. (2009). Application and analysis of support vector machine-based simulation for runoff and sediment yield. Biosystems engineering103(4), 527-535.‏
  10. Moravej, M., Amani, P., & Hosseini-Moghari, S. M. (2020). Groundwater level simulation and forecasting using interior search algorithm-least square support vector regression (ISA-LSSVR). Groundwater for Sustainable Development11, 100447.‏
  11. Nagy, H. M., Watanabe, K. A. N. D., & Hirano, M. (2002). Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering128(6), 588-595.‏
  12. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics9(1), 62-66.‏
  13. Saranya, M. P., & Amudha, T. (2014, December). Optimized block assignment for disaster inspection problem using bat metaheuristics. In 2014 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1-4). IEEE.‏
  14. Saidi, M., Kamasi, M. & Hasanpour, S. (2021). Finding the potential of underground water resources using the integrated approach of AHP and Fuzzy Topsis (case study: Silakhor Plain). Hydrogeomorphology, 8(26), 59-41. doi: 10.22034/hyd.2021.37835.1548. (in Farsi)
  15. Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert systems with applications28(1), 127-135.‏
  16. Torabi Podeh, H, Nasrolahi, A. H. & Dehghani, R. (2021). Evaluation of wavelet neural network model in predicting underground water resources (case study: Lorestan province, Iran). Hydrogeology, 6(1), 1-12. doi: 10.22034/hydro.2021.9403
  17. Vapnik, V., and Chervonenkis, A. (1991). The necessary and sufficient conditions for consistency in the empirical risk minimization method, Pattern Recognition and Image Analysis,1(3), 283-305.
  18. Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. Springer, New York
  19. Vapnik, V.N. (1998). Statistical learning theory. Wiley, New York
  20. Wang, D., Safavi, A.A., and  Romagnoli, J.A.(2000).  Wavelet-based adaptive robust M-estimator for non-linear system identification, AIChE Journal, 46(4), 1607-1615.
  21. Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., and Lee, K.K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer, Journal of Hydrol, 396(4),128–138
  22. Zamuda, A., Brest, J., & Mezura-Montes, E. (2013, June). Structured population size reduction differential evolution with multiple mutation strategies on CEC 2013 real parameter optimization. In 2013 IEEE congress on evolutionary computation(pp. 1925-1931). IEEE.‏
  23. Ziyai, S., Esmali, A., Mostafazadeh, R. & Ghorbani, O. (2021). Investigating the effective factors on changes in the underground water level and aquifer drop in Ardabil plain. Hydrogeomorphology, 8(28), 127-143. doi: 10.22034/hyd.2021.46333.1590