نوع مقاله : پژوهشی

نویسندگان

1 استادیار ژئومورفولوژی، گروه زمین‌شناسی دریایی، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

2 استادیار, Almeria, Spain

چکیده

در این پژوهش با هدف پایش و بازشناسی الگوهای فرمیک شبکه‌ی آبراهه­ ها در مرکز جزیره‌ی قشم از تصاویر پانکروماتیک HR-PR سنجنده GeoEye-1 استفاده شده­است. در این راستا با بهره ­گیری از الگوریتم­ های FWS ، MSA ، IDF و CFM در نرم‌افزار MATLAB ناحیه‌بندی فازی صورت گرفته ­است. در ادامه بر اساس ویژگی‌های فازی به ادغام تصاویر ورودی پرداخته و سپس با استفاده از خوشه‌بند‌ی­ فازی به ناحیه‌بندی تصاویر اقدام گردید. در این رابطه از فرآیند ادغام تصاویر پانکروماتیک و خروجی آن جهت ناحیه‌بندی استفاده شده ­است. در نهایت روش‌های خوشه‌بندی مورد مطالعه که دارای پارامترهای فازی هستند، بر روی تصاویر ورودی اعمال شده و نتایج آن مورد بحث و بررسی قرار گرفته است. نتایج ناحیه‌بندی فازی و مقایسه‌ی روش‌های پیشنهادی با یکدیگر نشان می­دهد که الگوریتم خوشه­ بندی CFM عملکرد بسیار خوبی در تشخیص عوارض و پدیده­ های مکانی و بازشناسی الگوهای فرمیک شبکه آبراهه ­ها دارد و دارای بهترین عملکرد در ناحیه‌بندی این منطقه می‌باشد. نتایج الگوریتم ­های خوشه ­بندی مورد مطالعه، کارایی روش‌های ناحیه‌بندی پیشنهادی را از منظر تشخیص عوارض و پدیده­ های مکانی و استخراج دقیق اطلاعات از تصاویر تایید می‌نمایند. از این رو مطابق نتایج پژوهش، استفاده از الگوریتم­ های خوشه­ بندی و ویژگی‌های فازی، جهت ادغام اطلاعات تصاویر ماهواره‌ای HR-PRS روش مناسب و بهینه با هدف ناحیه‌بندی می‌باشد. همچنین در ادغام این اطلاعات اعداد فازی نوع نرمال بهترین نوع اعداد جهت استفاده در ناحیه‌بندی منطقه محسوب می­شود و استفاده از اعداد فازی در حالت کلی می‌تواند ما را به نتایج بهتری در ناحیه‌بندی تصاویر ماهواره­ای برساند. نتایج این پژوهش می­تواند در آمایش سرزمین، مدیریت، برنامه­ ریزی و توسعه‌ی پایدار آتی مناطق مفید واقع شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Monitoring of Qeshm Island Drainage Network Formic Patterns Using Fuzzy Segmentation of processed Panchromatic Images (HR-PRS)

نویسندگان [English]

  • heeva elmizadeh 1
  • Hadi Mahdipour 2

1 Assistant Professor Department of Marine Geology, Khorramshahr Marine Science and Technology University

2 Chief Innovation Office, Sinenta Corp., La Cañada, 04120, Almeria, Spain

چکیده [English]

The purpose of this research is the automatic recognition of morphic patterns of drainage network in the center of Qeshm Island using High Resolution Panchromatic Remotely Sensed (HR-PRS) and fuzzy clustering algorithms. It also investigates the efficiency of these methods in the GeoEye-1 satellite imagery segmentation of the study area in order to detect geomorphic features in areas with cloud and shadow coverage. In this regard, fuzzy segmentation of HR-PRS panchromatic images of the study area, after radiometric and geometric preprocessing using FWS, MSA, IDF and CFM algorithms, was performed in MATLAB software. Finally, the studied fuzzy clustering algorithms with fuzzy parameters are applied to the input HR-PRS images and the results are discussed. The results show that the Classical Fusion Method and FCM (CFM) clustering algorithm has the best performance in the field of fuzzy segmentation and detection of the studied indices. . As a result, the image borders are well defined. The reason for this is the use of fuzzy numbers as well as efficient clustering methods in this method. These results also show that remote sensing technology, by providing multi-time images, can be a very good basis for monitoring and detecting environmental changes, detecting effects and accurately extracting information from images. Also, the use of clustering algorithms and fuzzy features is a suitable and optimal method for integrating HR-PRS satellite image information from a geographical area with the aim of segmentation.

کلیدواژه‌ها [English]

  • Panchromatic Image (HR-PRS)
  • GeoEye-1 Sensor
  • Fuzzy Clustering Algorithms
  • Qeshm Island
Ahmed, M. Z., Hamida, A. B., Benjelloun, M. (2007). Review of satellite image segmentation for an optimal fusion system based on the edge and region approaches, International Journal of Computer Science and Network Security, vol. 7, pp. 242-250.
Alok, A. K., Saha, S., & Ekbal, A. (2015). Multi-objective semi-supervised clustering for automatic pixel classification from remote sensing imagery. Soft Computing, 20(12), 4733–4751.
Arekhi, S., (2015). Detecting changes cover land use with object-oriented processing satellite images using the software Idrisi Selva (Case study: Abdanan). Journal of Geographic Information, 24: 51-61.
Awad, M., Chehdi, K. and Nasri, A. (2009). Multi-component image segmentation using a hybrid dynamic genetic algorithm and fuzzy C-means, IET Image Processing, vol. 3, pp. 52-62.
Bagherinia, A., Minaei-Bidgoli, B., Hossinzadeh, M., & Parvin, H. (2018). Elite fuzzy clustering ensemble based on clustering diversity and quality measures. Applied Intelligence, 49(5), 1724–1747.
Bayram. B., Demir. N., Akpinar. B., Oy. S., Erdem. F., Vögtle. T., Seker. D. Z. (2018). Effect of Different Segmentation Methods Using Optical Satellite Imagery to Estimate Fuzzy Clustering Parameters for SENTINEL-1A SAR Images, International archives of the photogrammetry, remote sensing and spatial information sciences, Vol.XLII-1, pp.39-43
Ben Salah. M, Mitiche. A, and Ben Ayed. I. (2010) Effective level set image segmentation with a kernel induced data term, Image Processing, IEEE Transactions on, vol. 19, pp. 220-232.
Carleer, A., Debeir, O, & Wolff, E. (2005). Assessment of very high spatial resolution satellite image segmentations, Photogrammetric Engineering & Remote Sensing, vol. 71, pp. 1285-1294, 2005.
Chouhan, S. S., Kaul, A., & Singh, U. P. (2018). Image Segmentation Using Computational Intelligence Techniques: Review. Archives of Computational Methods in Engineering, 26(3), 533–596.
Das, S. and Sil, S. (2010). Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm, Information Sciences, vol. 180, pp. 1237–1256.
Fan, J., & Wang, J. (2018). A Two-Phase Fuzzy Clustering Algorithm Based on Neurodynamic Optimization with Its Application for PolSAR Image Segmentation. IEEE Transactions on Fuzzy Systems, 26(1), 72–83.
Fang, W., Liang-shu, W., Jun-jie, H., Gui-ling, L., & Xi-ping, J. (2017). Optimized fuzzy C-means clustering algorithm for the interpretation of the near-infrared spectra of rocks. Spectroscopy Letters, 50(5), 270–274.
Fourie, C., (2015). On Attribute Thresholding and Data Mapping Functions in a Supervised Connected Component Segmentation Framework, Remote Sensing, Vol.7(6), pp.7350-7377
Fu, G., Zhao, H., Li, C., & Shi, L. (2013). Road Detection from Optical Remote Sensing Imagery Using Circular Projection Matching and Tracking Strategy. Journal of the Indian Society of Remote Sensing, 41(4), 819–831.
Gao, B., & Wang, J. (2015). Multi-Objective Fuzzy Clustering for Synthetic Aperture Radar Imagery. IEEE Geoscience and Remote Sensing Letters, 12(11), 2341–2345.
Ghamisi, P., Ali, A.-R., Couceiro, M. S., & Benediktsson, J. A. (2015). A Novel Evolutionary Swarm Fuzzy Clustering Approach for Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2447–2456.
Ghosh, A., Mishra, N. S., & Ghosh, S. (2011). Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Information Sciences, 181(4), 699–715.
Hasanzadeh, M., and Kasaei, S. (2010). A Multispectral Image Segmentation Method Using Size-Weighted Fuzzy Clustering and Membership Connectedness. IEEE Geoscience and Remote Sensing Letters, 7(3), 520–534.
Hashemi, S., Akbarinasab, M., Safarrad, T. (2018). The Detection of the Plume of the Arvand River Using Satellite Images. Hydrogeomorphology, 4(13), 147-164. (In Persian)
HongLei, Y., JunHuan, P., BaiRu, X., & DingXuan, Z. (2013). Remote Sensing Classification Using Fuzzy C-means clustering with Spatial Constraints Based on Markov Random Field. European Journal of Remote Sensing, 46(1), 305–316.
Hou, B., Ren, Z., Zhao, W., Wu, Q., & Jiao, L. (2020). Object Detection in High-Resolution Panchromatic Images Using Deep Models and Spatial Template Matching. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 956–970.
Laws. K. I. (1980). Rapid texture identification," in 24th annual technical symposium, pp. 376-381.
Mahdipour, H. (2015). Multi-image noise-resistant segmentation in panchromatic satellite imagery. PhD Thesis in Electrical-Telecommunications, Ferdowsi University of Mashhad. (In Persian)
Mahmoudi. F. T; Samadzadegan. F. and Reinartz. P. (2015). Object recognition based on the context aware decision-level fusion in multi views imagery," Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 8, pp. 12-22.
Ming. D., Ci. T., Cai. H., Li. L., Qiao. C., and Du. J. (2012). Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm," Geoscience and Remote Sensing Letters, IEEE, vol. 9, pp. 813-817.
Mitra, S. and Kundu, P. P. (2011). Satellite image segmentation with Shadowed C-Means, Information Sciences, vol. 181, pp. 3601–3613.
Moustakidis, S., Mallinis, G., Koutsias, N., Theocharis, J. B., & Petridis, V. (2012). SVM-Based Fuzzy Decision Trees for Classification of High Spatial Resolution Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 50(1), 149–169.
Naeini A.A., Niazmardi S., Namin S.R., Samadzadegan F., Homayouni S. (2013) A Comparison Study between Two Hyperspectral Clustering Methods: KFCM and PSO-FCM, Computational Intelligence and Decision Making, vol 61, pp. 23-33.
Rajabi, A., & Momeni, M. (2016). Urban Buildings Changes Detection in 1:2000 Map Using GeoEye1 Satellite Stereo Images. Journal of Geomatics Science and Technology, 5 (3):279-292. (In Persian)
Saffari, A., Jan Ahmadi, M., Raeati Shavazi, M. (2015). Site Selection for Suitable Flood SpreadingAnd Artificial Feeding through Hybrid, AHP-Fuzzy Model Case Study: (Bushkan Plain, Bushehr Province). Hydrogeomorphology, 2(3), 81-97. (In Persian)
Saha, I., Maulik, U., Bandyopadhyay, S., & Plewczynski, D. (2012). SVMeFC: SVM Ensemble Fuzzy Clustering for Satellite Image Segmentation. IEEE Geoscience and Remote Sensing Letters, 9(1), 52–56.
Shang, R., Tian, P., Jiao, L., Stolkin, R., Feng, J., Hou, B., & Zhang, X. (2016). A Spatial Fuzzy Clustering Algorithm with Kernel Metric Based on Immune Clone for SAR Image Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(4), 1640–1652.
Trabelsi, M., & Frigui, H. (2019). Robust fuzzy clustering for multiple instance regression. Pattern Recognition, 90, 424–435.
Wan, Y., Zhong, Y., & Ma, A. (2019). Fully Automatic Spectral–Spatial Fuzzy Clustering Using an Adaptive Multiobjective Memetic Algorithm for Multispectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 2324–2340.
Xie, H., Luo, X., Wang, C., Liu, S., Xu, X., & Tong, X. (2015). Multispectral remote sensing image segmentation using rival penalized controlled competitive learning and fuzzy entropy. Soft Computing, 20(12), 4709–4722.
Xu, Y., Chen, R., Li, Y., Zhang, P., Yang, J., Zhao, X, Wu, D. (2019). Multispectral Image Segmentation Based on a Fuzzy Clustering Algorithm Combined with Tsallis Entropy and a Gaussian Mixture Model. Remote Sensing, 11(23), 2772.
Yu, C., Wang, L., Zhao, J., Hao, L., & Shen, Y. (2020). Remote sensing image classification based on RBF neural network based on fuzzy C-means clustering algorithm. Journal of Intelligent & Fuzzy Systems, 38(4), 3567–3574.
Yu, H., Xu, L., Feng, D., & He, X. (2015). Independent feature subspace iterative optimization based fuzzy clustering for synthetic aperture radar image segmentation. Journal of Applied Remote Sensing, 9(1), 095060.
Yu. X, He. H, Hu. D, and Zhou. W. (2014). Land cover classification of remote sensing imagery based on interval-valued data fuzzy c-means algorithm, Science China Earth Sciences, vol. 57, pp. 1306-1313.
Zeinali, B., & Asghari, S. (2016). Mapping and monitoring of dust storms in Iran by fuzzy clustering and remote sensing techniques. Arabian Journal of Geosciences, 9(9).
Zhang, M., Ma, J., & Gong, M. (2017). Unsupervised Hyperspectral Band Selection by Fuzzy Clustering with Particle Swarm Optimization. IEEE Geoscience and Remote Sensing Letters, 14(5), 773–777.
Zheng, Z.; Cao, J.; Lv, Z.; Benediktsson, J.A. (2019). Spatial–Spectral Feature Fusion Coupled with Multi-Scale Segmentation Voting Decision for Detecting Land Cover Change with VHR Remote Sensing Images. Remote Sensing, Vol. 11(16), 2-22