نوع مقاله : پژوهشی

نویسندگان

1 استاد گروه ژئومورفولوژی، دانشکده‌ی برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

2 گروه ژئومورفولوژی دانشکده برنامه ریزی و علوم محیطی دانشگاه تبریز

3 دانشجوی دکتری ژئومورفولوژی، دانشکده‌ی برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

چکیده

امروزه فرسایش خاک به عنوان یکی از مباحث مهم مدیریت حوضه­ های آبریز در سطح ملی و جهانی مطرح می­باشد. در این پژوهش به منظور شناسایی توزیع مکانی فرسایش خاک و تولید رسوب در حوضه‌ی آبریز سراب سیکان از معادله‌ی جهانی اصلاح شده هدر رفت خاک استفاده شده است. با استفاده از داده­ های بارندگی 17 ساله (1397-1380)، اطلاعات خاک­شناسی و مدل رقومی ارتفاعی با تفکیک 10 متری هر یک از فاکتورهای فرسایندگی (R)، فرسایش­ پذیری (K)، شیب و طول شیب (LS) و حفاظت خاک (P) در محیط ArcGIS تهیه شدند. از سنجنده­ ی ماهواره سنتینل 2 نیز جهت استخراج و تهیه فاکتور پوشش گیاهی حوضه (C) در محیط نرم افزارENVI 5.3  استفاده شد. در نهایت با ترکیب این فاکتورها در محیط نرم­افزار ArcGIS مقدار فرسایش حوضه محاسبه گردید سپس با روش ­های مختلف نسبت تحویل رسوب (SDR) میزان رسوب تولید شده در حوضه به دست آمد. نتایج نشان داد که مقدار فرسایش در سطح حوضه از 003/0 تا 4/248 تن در هکتار در سال در سطح پیکسل متغیر بوده و میانگین هدر رفت خاک در حوضه 3/22 تن در هکتار در سال می­باشد. در بین فاکتورهای مدل، فاکتور LS با ضریب همبستگی 92/0=R2 بیش­ترین تأثیرگذاری در فرسایش خاک را نشان داد. همچنین مقدار نسبت SDR با روش­ های مختلف بین 12/0 تا 36/0 محاسبه گردید که پس از تلفیق با نقشه فرسایش، بار رسوب حوضه محاسبه شد. میانگین بار رسوب با روش بویس 8/2 تن در هکتار در سال می­باشد که نسبت به روش ­های دیگر به مقدار رسوب ایستگاه (65/1 تن در هکتار در سال)  نزدیک­تر می­باشد. 

کلیدواژه‌ها

عنوان مقاله [English]

Estimation of Erosion-Sediment in Sarab Sikan Watershed Using RUSLE Model

نویسندگان [English]

  • Mohammad Hossein Rezaei Moghaddam 1
  • asadollah hejazi 2
  • Mehdi Mezbani 3

1 - Professor, Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz, Iran

2 Department of Geomorphology, Faculty of Planning and Environmental Sciences, Tabriz University

3 Ph.D. Candidate in Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz, Iran

چکیده [English]

In this study, in order to identify the spatial distribution of soil erosion and sediment production in Sarab Sikan basin, the RUSLE model, GIS and remote sensing technology are used. First, using meteorological data, soil and digital elevation model with a size of 10 meters, each of the factors of erosion erosivity (R), erodibility (K), slope and slope length (LS) and soil protection (P) in the Arc GIS was calculated in Arc GIS. Sentine2 satellite sensor was also used to extract and prepare the vegetation factor of the basin (C) in ENVI 5.3 software environment. Finally, by combining these factors, the amount of basin erosion was calculated and the amount of sediment produced in the basin was obtained by different methods of sediment delivery ratio (SDR). The results showed that the amount of erosion in the basin is varies from 0.003 to 248.4 t ha-1y-1 and the average erosion in the basin is 22.3 t ha-1y-1. Among the model factors, LS factor with a correlation coefficient of R2 = 0.92 showed the highest share in soil erosion. Also, the SDR ratio was calculated by different methods between 0.12 and 0.36, which after combining with the erosion map, the sediment yield of the basin was estimated. The average sediment yield by Boise method is 2.8 t ha-1y-1, which is closer to the amount of station sediment with an average of 1.65 t ha-1y-1 compared to other methods.

کلیدواژه‌ها [English]

  • Erodibility
  • Sentinel2 Satellite
  • SDR
  • Soil erosion
  • Sarab of Sikan
  • Darrehshahr
Absaran Consulting Engineers. (2010). Sikan reservoir dam studies, second stage. pp, 437. 
Alizadeh, A. (2010). Principles of Applied Hydrology. Imam Reza University Press, 30, pp. 912.
Arekhi, S; & Niazi, Y. (2010). Investigating Application of GIS and RS to Estimate Soil Erosion and Sediment Yield Using RUSLE (Case Study: Upper Part of Ilam Dam Watershed, Iran). Journal of Water and Soil Conservation, 17(2), 1-27.
Armin, M; Valinejad, H; GHorbannia.kheybari, V. (2020). Estimation of Soil Erosion in the Tang-e-Sorkh Dam Watershed Using the Revised Universal Soil Loss Equation (RUSLE) and Remote Sensing (RS) and Geographic Information System (GIS) Capabilities. Hydrogeomorphology, 6, No, 23, 159-183.
Babaei, M., Hoseini, S.Z.A., Nazari Samani, A.A., & Almodaresi, S.A. (2015). Soil Erosion Zoning Using RUSLE 3D Model, Case study: Can basin. Watershed Engineering and Management, 8(2), 165-181.
Bayat, R; Moradi, SH. (2014). Review of Research Conducted on the Sediment Delivery Ratio. Extension and Development of Watershed Management, 2 (5), 27-36.
Drzewiecki, W; Wężyk, P; Pierzchalski, M; & Szafrańska, B. (2014). Quantitative and qualitative assessment of soil erosion risk in Małopolska (Poland), supported by an object-based analysis of high-resolution satellite images. Pure and Applied Geophysics, 171, 867-895.
Ganasri, B.P & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS: A case study of Nethravathi Basin. Geoscience Frontiers, 7 (6), 953-961.
Gaubi I, Chaabani A, Mammou AB, Hamza M. (2017). A GIS-based soil erosion prediction using RUSLE model (Lebna watershed, Cap Bon, Tunisia). Natural Hazards, 86 (1), 219-239.
Habashi, Kh; Mohammadi, Sh; Karimzadeh, H.R; Pourmanafi, S. (2018). Assessment soil erosion risk in Kohpayeh- segzi plain using Revised Universal Soil Loss Equation (RSLE). Journal of Natural Environmental Hazards, 7, (15):161-178.
Karaburun, A. (2010). Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean Journal of Applied Sciences, 3 (1), 77-85. 
Karimi, H; Fathizad, H; Tavakoli, M; Bazgir, M; Graee, P. (2013). Evaluation the Efficiency of MUSLE Model in Sediment Load Estimation Resulting from Individual Rain Events in Doviraj River Sub-Basins, Ilam Province. Environmental Erosion Researches, No, 11, 39-54.
Kinnell, P.I.A. (2000). AGNPS-UM: applying the USLE-ithin the agricultural non-point source pollution model. Environmental Modelling and Software, 15(3), 331-341.
Meghraoui M, Habi M, Morsli B, Regagba M, Seladji A. (2017). Mapping of soil erodibility and assessment of soil losses using the RUSLE model in the Sebaa Chioukh Mountains (northwest of Algeria). Journal of Water and Land Development, 34 (1), 205-213.
Miguel P.A., Samuel-Rosa R., Simao Diniz Dalmolin F., ArajoPedron J., & MouraBueno A. (2011). The USLE model for estimating soil erosion in complex topography areas. Annals XV Brazilian Symposium on Remote Sensing, (SBSR), Brasil, 9227-9230.
Mohammadi, M; Falah, M; Kavian, A. A; GHolami, L; Omidvar, E. (2017).  The Application of RUSLE Model in Spatial Distribution Determination of Soil loss Hazard. Iranian Journal of Ecohydrology, 3 (4), 645-658.
Mohammadi, SH; Karimzadeh, H.R; Alizadeh, M. (2018). Spatial estimation of soil erosion in Iran using RUSLE model. Iranian Journal of Ecohydrology, 5 (2), 551-569.
Mohammadi, SH; Karimzadeh, H.R; Pourmanafi, S; Soltani, S. (2018). Spatial and Temporal Evaluation of Soil Erosion using RUSLE model Landsat satellite image time series (Case Study: Menderjan, Isfahan). Journal of Range and Watershed Management, 71(3), 759-774.
Mokhtari, L.G., Shafiei, N., & Rahmani, A. (2018). Estimation of soil erosion using RUSLE model, a case study of Noorabad Mamasani basin. Hydrogeomorphology, 17, 1-21.
Panagos, P; Borrelli, P; Poesen, J; Ballabio, C; Lugato, E; Meusburgerb, K; Montanarellaa, L & Alewell, CH. (2015). The  new  assessment  of  soil  loss  by  water  erosion  in  Europe. Environmental Science & Policy, 54, 438- 447. 
Renard K, Foster G, Weesies G, McCool D, & Yoder D. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation RUSLE). US Department of Agriculture (Ed.). Agricultural Handbook. US Department of Agriculture, Washington, 703, 1–251.
Renard, K.G. & Freidmund, J.R. (1994). Using monthly precipitation data to estimate the R-factor in the RUSLE, Journal of Hydrology. 157, 287-306.
Rezaei, PY; faridi, P; Ghobani, M; Kazemi, M. (2014). Estimation of Soil Erosion Using RUSLE Model and Identification of the Most Effective Factor in the Erosion of the Gabrik Basin, Quantitative Geomorphological Research, 3 (1), 97-113.
Sanaienejad, S. Shah Tahmasbi, A. Sadr Abadi Haghighi, R. Kelarestani, K. (2008), A Study of Spectral Reflection on Wheat Fields in Mashhad Using MODIS Data. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, 12 (45), 11-19.
Shahrivar, A; Noor, H; Khazaei, M. (2017). Environmental issues of soil erosion. Arshadan publisher, 1,pp 164.
Teng H, Rossel RA, Shi Z, Behrens T, Chappell A, & Bui E. (2016). Assimilating satellite imagery and visible–near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environmental Modelling & Software, 77,156-167.
Vrieling, A., G. Sterk., & N. Beaulieu. (2002). Erosion risk mapping: a methodological case study in the Colombian Eastern Plains. Soil and Water Conserve. 57(3), 158-163. 
Wischmeier, W.H; & Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook. US Department of Agriculture. Washington DC, 537, 13-27.