نوع مقاله : پژوهشی

نویسندگان

1 هیئت علمی

2 هیات علمی- مدیر گروه ژئومورفولوژی

چکیده

زمین‌لغزش‌ها همواره نقش موثری در تحول و تکامل دامنه‌ها داشته و مخاطرات جدی را در بیشتر نقاط زمین موجب شده اند. شناسایی عوامل مؤثر در وقوع زمین لغزش و پهنه‌بندی خطر آن جهت برنامه‌ریزی و انجام اقدامات کنترلی از اهداف تحقیق حاضر می‌باشد. بنابر‌این برای مدیریت خطر در حوضه نازلوچای در شمال غرب ایران، کارایی روش آماری رگرسیون لجستیک مورد ارزیابی قرار گرفته است. برای انجام تحقیق، نقشه پراکنش زمین‌لغزشها از طریق بازدیدهای میدانی و استفاده از اطلاعات محلی، عکسهای هوایی و تصاویر ماهواره‌ای Google Earth، تهیه گردید. در ادامه، عوامل مؤثر در وقوع زمین لغزش شامل شیب، جهت شیب، ارتفاع، بارش، پوشش گیاهی، لیتولوژی، کاربری اراضی، فاصله از گسل، فاصله از رودخانه و فاصله از جاده با استفاده از نقشه توپوگرافی، عکس هوایی و تصاویر ماهواره‌ای تهیه و وارد مدل گردیدند. پس از کمّی کردن طبقات هر یک از لایه‌های موضوعی با استفاده از تراکم زمین‌لغزش‌ها، لایه‌ها استانداردسازی شدند و پهنه‌بنـدی با روش‌آماری رگرسیون لجستیک انجام گردید. با توجه به ضرایب متغیرهای مستقل، متغیرهای لیتولوژی، شیب و جهت شیب مهمترین عوامل موثر بر وقوع زمین لغزش های حوضه مورد مطالعه می باشند. همچنین مقادیر آماره های آزمون معناداری مدل نشان دهنده مناسب بودن این مدل برای حوضه مورد مطالعه می باشد.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

Prioritization of affecting factors on the landslide occurrence using the logistic regression model (Case study: Nazlochai basin)

نویسندگان [English]

  • Ahmad Najafi Eigdir 1
  • shahram roostaei 2

1 Academic Member

2 Head of Geomorphology department

چکیده [English]

1-Introduction
Several factors have contributed to the occurrence of the landslide that could increase the risk of landslide in any area. Identifying these factors and their value can help to appropriate landslide zonation. The aim of the study is to find ways to reduce the damages caused by them, which makes it necessary to zoning the susceptible areas that play an undeniable role in watershed management. Therefore, by using statistical models and assessing them, the sensitive areas to the occurrence of landslide are identified. In this research, the landslide hazard zonation was performed based on the data-driven method. Based on this method, the zoning was done based on the use of slope data, aspect, elevation, precipitation, vegetation, geology, land use, distance to fault, distance to river, and distance to road. To validate the model, the ROC curve has been used which is a new and efficient method for verification. The purpose of this research is to investigate various influencing factors that affect the landslide occurrence in the Nazlochai basin.
2-Methodology
In the methodology section, the satellite imagery processing (to identify and extract landslides, vegetation extraction, and land use) and logistic regression model have been discussed for landslide hazard zonation. In this study, by reviewing the previous sources (Mir Nazari, et al., 1393, Abedini, et al., 1393, Ayalew, et al., 2004, Ebadinejad, et al., 2007) and by investigating various factors (morphometric, climatic, and human) in Nazlochai basin, ten effective factors (elevation, slope, aspect, distance to river, distance to road, distance to fault, lithology, landuse, precipitation, and vegetation) on the landslide occurrence in the area were considered. The ArcGIS software was used to digitize and provide information layers for landslide hazard zonation, and the ENVI software was used for image processing, vegetation extracting, and land use mapping. Existing landslides were identified and characterized using various tools including aerial photos, satellite imagery (Google Earth), existing information, Global Position System (GPS), and field surveys.
3-Results and Discussion
The obtained coefficients indicated that the occurrence of landslide in the studied area had a direct relation with lithology, slope, and aspect factors, and weak relation with landuse, distance to fault, precipitation and distance to river. Lithology investigation of the region indicated that the more landslides have occurred on calcareous and conglomerate stones, which could be due to the development of the slopes and the accumulation of destructive materials on them. Slope is one of the slippery factors due to gravity and decreasing shear strength of soil in slopes of more than 10% to 45% leads to instability which in most researches is considered as an effective factor, too. Also, north slopes are more susceptible to landslide than the southern slopes due to the reduction of normal pressure and shear strength of the soil. By considering the Pseudo R-square index (equal to 0.34), which is greater than the threshold (0.2), this model shows acceptable fit. The area under the ROC curve was equal to 0.958, which shows a strong correlation with predicted landslides by the logistic regression model. Finally, the study area was classified into 5 landslide hazard classes include very low, low, medium, high, and very high.



4-Conclusion
In this research, landslide hazard zonation has been done using the logistic regression model in the Nazlochai basin. The coefficients of variables indicated that the occurrence of landslide in the study area had a direct relationship with the lithology, slope, and aspect factors; and weak relationship with landuse and distance to fault. Thus this indicates the probability of landslide occurrence increases by changing in lithology, slope, and aspect

کلیدواژه‌ها [English]

  • Landslide Hazard Zonation
  • Geographical Information System
  • Logistic Regression Model
  • Nazlochai Basin
  • West Azarbaijan
5- منابع
Abedini, M., & Fathi, M. H. (2014). Zoning of landslide risk sensitivity in Khalkhal Chay watershed using multi-criteria models. Quantitative Geomorphological Research, 2(4), 71-85.
Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the environment58(1), 21-44.
Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology65(1-2), 15-31.
Can, T., Nefeslioglu, H. A., Gokceoglu, C., Sonmez, H., & Duman, T. Y. (2005). Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology72(1-4), 250-271.
Chung, C. F. (2002). Stability analysis of prediction models applied to landslide hazard mapping. Applied Geomorphology, Theory and Practice. pp. 1-19.
Clark, W. A., & Hosking, P. L. (1986). Statistical methods for geographers (No. 310 C5).
Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology42(3-4), 213-228.
Ebadinejad, S. A., Yamani, M., Maghsoudi, M., & Shadfar, S. (2007). Evaluating the efficiency of fuzzy logic operators in determining landslide capability (Case study of Shirood watershed). Iranian Journal of Watershed Management Science and Engineering, 1(2), 39-44.
Geological maps of Urmia and Sero with a scale of 1: 100000 and geological maps with a scale of 1: 250,000. Geological Survey of Iran, 1988 and 2006, along with reports.
Greco, R., Sorriso-Valvo, M., & Catalano, E. (2007). Logistic regression analysis in the evaluation of mass movements susceptibility: the Aspromonte case study, Calabria, Italy. Engineering Geology89(1-2), 47-66.
Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology31(1-4), 181-216.
Hosseinzadeh, M. M., Sarvati, M. R., Mansori, A., Mirbaghari, B., & Khazri, S. (2009). Zoning the risk of mass movement occurrences using logistic regression model, case study in vicinity of Sanandaj-Dehgolan road. Iranian Journal of Geology, 3(11), 27-37.
Khodaei, L., Roustaei, S., & Hejazi, S. S. (2017). Evaluation of logistic regression method in landslide potential study Case study: Hajilar Chay river basin. Journal of Natural Geography, 10(37), 45-57.
Kleinbaum, D. G., & Klein, M. (2010). Logistic Regression: A Self-learning Text. Springer Science and Business Media. New York, NY.
Liu, J. G., & Mason, P. J. (2009). Essential image processing and GIS for remote sensing. John Wiley & Sons. 443p.
Menard, S. (1995). Applied Logistic Regression Analysis: Sage University Series. Thousand Oaks. California. 98p.
Meteorological Studies Report. (2006). General Department of Natural Resources of West Azerbaijan, Chaharmahal Water Rescue Consulting Engineers.
MirNazari, J., Shahabi, H., & Khezri, S. (2014). Currency and Physics of the AHP and Objectives in the Islamic Republic of Iran. Journal of Geography and Development, 37, 53-70.
Nefeslioglu, H. A., Gokceoglu, C., & Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology97(3-4), 171-191.
Pourghasemi, H. R., Moradi, H. R., & Mohammadi, M. (2014). Landslide Susceptibility Zoning, Using Weight of Evidence Probabilistic Model. Engineering Journal of Geospatial Information Technology, 1(2), 69-80.
Rahimpour, T., Roostaei, S. & Nakhostinrouhi, M. (2018). Landslide Hazard Zonation Using Analytical Hierarchy Process and GIS A Case Study of Sardool Chay Basin, Ardabil Province. Hydrogeomorphology, 4(13), 1-20.
Roostaei, S., Khairizadeh, M., Sarafrozeh, S., & Najafi Igdir, A. (2012). Landslide risk zoning using the factor of uncertainty model. National Conference of the Iranian Geomorphological Association, 1, 163-165.
Roostaei, S., Najafi Igdir, A., & Hejazi, A. (2018). Landslide Hazard Zonation Using the Fuzzy Logic Method in Nazlo-Chay Basin. Quantitative Geomorphological Research, 6(4), 103-119.
Sadr al-Din, M., Ismaili, R., & Hosseinzadeh, M. M. (2009, Determination of Landslide Sensitivity Using Logistic Regression in Vaz Basin (Mazandaran Province). Journal of Natural Geography, 2(5), 83-73.
Shariat, J. M., & Ghayoumian, J. (2008). Assessment of Bivariate Statistical Analysis Model in Landslide Hazard Zonation. Journal of Science (University of Tehran), 34 (1), 137-143.
Shirani, K., & Arabameri, A. R. (2015). Landslide Hazard Zonation Using Logistic Regression Method (Case Study:Dez-e-Oulia Basin). Journal of Water and Soil Science, 19 (72), 321-335.
Swets, J.A. (1988). Measuring the accuracy of diagnostic systems. Sicence, 240(4857), 1285-1293.
Teimouri, M., & Asadi Nalivan, O. (2020). Susceptibility Zoning and Prioritization of the Factors Affecting Landslide Using MaxEnt, Geographic Information System and Remote Sensing Models (Case study: Lorestan Province). Hydrogeomorphology, 6(21), 155-179.
Van Westen, C. J. (1998). Geographic Information Systems in Slope Instability Zonation (GISSIZ). ITC, P. 156.