نوع مقاله : پژوهشی

نویسندگان

1 هیئت علمی دانشگاه ارومیه

2 فارغ التحصیل

چکیده

در مقاله حاضر اقدام به تهیه نقشه شاخص گرادیان طولی رودخانه‌های ارتفاعات شمال دامغان با استفاده از ابزارهای اتوماتیک در محیط GIS شده است. هدف اصلی این پژوهش، ارائه روشی اتوماتیک جهت ترسیم نقشه شاخص SL با استفاده از مدل رقومی ارتفاعی و در مرحله بعد تحلیل ارتباط آن با تکتونیک منطقه است. بدین منظور از مدل‌های رقومی ارتفاعی (DEM 12.5m)، نقشه‌های زمین شناسی 1:100000 و توپوگرافی 1:25000 استفاده شد. به منظور محاسبه و استخراج این شاخص از داده‌های رقومی ارتفاعی به جای نیمرخ طولی رودخانه استفاده شده است تا بتوان مقادیر شاخص را به صورت سطحی و برای کل منطقه نشان داد. مقادیر SL، برای نقاط میانی منحنی میزان‌هایی با فاصله 50 متری محاسبه و سپس با استفاده از روش‌های درون یابی، برای کل منطقه محاسبه گردید. همچنین شاخص‌هایی چون انتگرال هیپسومتری حوضه‌ها، شیب متوسط و ارتفاع متوسط برای تمامی حوضه‌ها برآورد شد. محاسبات و ترسیم نقشه‌ها با استفاده از نرم افزار Arc GIS 10.6 و QGIS 3.4 انجام گرفت. نتایج نشان می‌دهد که روش حاضر با توجه به اتوماتیک بودن آن با دقت و سرعت بالایی قادر به تهیه نقشه شاخص SL است. همچنین نتایج نشان می‌دهد که مقادیر شاخص SL، در مناطق مرکزی منطقه مورد مطالعه و در امتداد گسل‌های اصلی (روند غربی ـ شرقی)، بالاست. بنابراین وجود گسل‌ها و بالاآمدگی ناشی از آنها، ارتباط زیادی با مقادیر بالای گردایان طولی رودخانه دارد.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

DEM and GIS Base Mapping of Stream – Length Gradient Index (SL) For Active Tectonic Assessment Case Study: North of Damghan

نویسندگان [English]

  • Vahid Mohammadnejad Arooq 1
  • ali khedmatzadeh 2

1 Assistant Professor, Department of Geography, Urmia University, Urmia, Iran

2 graduate

چکیده [English]

1-Introduction
The effects and evidence of tectonic activity can be seen in most parts of the planet; particularly if these activities have occurred during the Quaternary period and thereafter, the evidence would be readily recognizable (Guarnieri and Pirrotta, 2008:264). Iran is tectonically an active region. Many indices have been developed, tested and validated for quantitative geomorphic analyses to identify topographic fingerprints of surface and sub-surface processes. Morphometric analyses of river networks, drainage basins and relief using geomorphic indices, as well as geostatistical analyses of topographical data have become useful tools for investigating landform evolution. GIS platforms and high-resolution digital elevation models (DEM) facilitate the computation and charting of this type of information (Hayakawa & Oguchi, 2009:31). The stream length gradient index (SL), describes the morphology of the drainage network using a topographic gradient along a river. This index is sensitive to tectonic and lithology activities and is used as an indicator for tectonic areas. In this study, the morphometry of the catchment in north of Damghan was estimated and their stream – length gradient (SL) indexes have been mapped using GIS.




2-Methodology
The studied area is located in northern mountain range of Damghan (East Alborz). In order to study the morphometry and tectonic indexes of the area, geological maps (1:100000), topographic maps (1:25000), and DEM 12.5m were used. The computation of SL was based on the interpolation of a discrete value. For a segment of a given river, the SL has been defined as: SL= (ΔH/ ΔL) Ltc. where ΔH is the variation of elevation, ΔL is the length of the segment, and Ltc is the total channel length from the midpoint of the segment where the index is calculated from upstream to the divide; actually, (ΔH/ΔL) is the slope of the considered segment. The drainage network was automatically delineated from the DEM, and SL was computed using ArcGIS 10.6®with the Spatial Analyst® extension, supported by several freeware packages including Arc Hydro Tools and ET Geowizard. The obtained point dataset of SL was interpolated using the ordinary kriging (OK) algorithm to estimate the spatial distribution of SL for the whole river basin.
 3-Results and Discussion
Geologically, the studied area is located on the southern slopes of Eastern Alborz. The southern parts of the area are located between the two structural units of Alborz and Central Iran. This has caused the complexity of this part, lithologically and tectonically. A large part of the studied area consists of the Mesozoic formations, especially Jurassic. These formations consist mainly of sandstone, coal shale and gray to dark-colored limestone. Tectonically, the area is active and there have been several earthquakes in and around this area. The main systems of the faults of the region are thrusts and then strike-slip faults. In sub basins, the hypsometric integral values range from 0.18 to 0.66. Unlike the average height of the sub-basins, which has a natural trend, the hypsometric integral in the region is heterogeneous and has been distributed depressively. The average slope of the sub-basin is 18 degrees and its maximum slope is 33 degrees. The values of SL index range from 72 to 985 m. High values of SL are observed in the center,

 
east and southwest of the region. The core of the high values is located in the center of the region, where major and minor faults are observed.
4- Conclusion(s)
The purpose of this study was to provide a map of SL index in northern mountain of Damghan. The indicators used in this research, such as slope, hypsometric integral, longitudinal elevation and river gradient, were automatically calculated using GIS and digital elevation models. The results showed that the presence of faults and their uplift were related to the high values ​​of the SL, indicating a different uplift in hole parts of the region. The maximum values ​​of the SL index were observed around the faults, especially in the central part of the studied area. The results also showed that sub-basins with high slopes also had high hypsometric integral values. This can also indicate the high degree of erosion processes. Considering that in this study DEM, topographic maps and interpolation methods were used to calculate the longitudinal gradient of the river, it seems to be more comprehensive than the longitudinal profile of the river, and provides a broad view of the geomorphological processes of basins and sub-basins

کلیدواژه‌ها [English]

  • Active Tectonic
  • Hypsometry Integral
  • SL index
  • North Damghan rivers
 
Adib, A. (1382). Active tectonics and earthquake potential risk in Tabas, Environmental Geology, No. 2, 27-45
Ambraseys, N.N.; Melville, C.P. (1982). A History of Persian Earthquakes, Cambridge University Press, UK.
Beaty, C.B. (1963). Origin of alluvial fans, White Mountains, California and Nevada. Ann. Assoc. Am. Geogr; 53, 516–535.
Cox, R.T., (1994). Analysis of drainage-basins symmetry as rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from Mississippi Embayment, Geol. Soc. Am. Bull; 106, 571–581.
Della Seta, M., Del Monte, M., Fredi, P., Lupia Palmieri, E., (2004). Quantitative morphotectonic analysis as a tool for detecting deformation patterns in soft rock terrains: a case study from the southern Marches, Italy, Géomorphologie; 4, 267–284.
Esfandyari, F; Salahi, B; Hasanzade, R. (1394). Evaluation of neotectonic activities in Aliabadchai catchment using tectonic indicators, Researches in Earth Sciences, No 22, 84-99
Fattahi, M. (2006). Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL), Earth and Planetary Science Letters; 245, 20-34.
Font, M., Amorese, D., Lagarde, J.L., (2010). DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: the Normandy intraplate area (NW France) Geomorphology, No. 119, 172–180.
Guarnieri, P. and Pirrotta,C., (2008). The response of drainage basins to the late quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily), Geomorphology; 95, 260-273.
Gorabi, A; Parizi, A. (1394). The effect of active tectonics on the evolution of southwestern slopes of Shirkuh landscapes, Quantitative Geomorphological Researches, No. 2, 45-59.
 Gorabi, A; Imami, K. (1396). The effect of active tectonics on the morphologic changes of drainage basins in Makran coastal zone, Quantitative Geomorphological Researches, No. 1, 74-89
Gorabi, A; Mohammadnejad, V. (1397). Active Tectonics and Its Impact on the Evolution of the Quaternary Landforms in Tabass Region, Iran, Physical Geography Research, No. 2, 271-291.
Hack, J.T., (1973). Stream-profile analysis and stream-gradient index. U. S. Geol. Surv. J. Res; 1, 421–429.
Hayakawa, Y.S., Oguchi, T., (2009). GIS analysis of fluvial knickzone distribution in Japanese mountain watersheds. Geomorphology; 111, 27–37.
Holinsworth, J. (2010). Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left‐lateral Astaneh fault system during the great 856 A.D. Qumis earthquake, Journal of Geophysical Research; 115, 1-19.
Jafari, M.H; Abbasi, M. (1397). Analysis of lithology and tectonic roles topographic evolution of Gezelozan river traces, Hydrogeomorphology, No. 14, 1-22.
Jafari, GH; Norozi, M. (1396). Evaluation of morphotectonic indexes in Qanqli catchment, Geography and Territorial Spatial Arrangement, No. 22, 117-132.
Keller, E.A., Pinter, N., (2002). Active Tectonics, Earthquakes, Uplift and Landscape, Second edition. Prentice Hall, Upper Saddle River, New Jersey.
Khalili, Marzieh; Seyed Kazem Alavi Panah, Seyed Sabereh Abdollahi Eskandar; (2019). Using Robust Satellite Technique (RST) to determine thermal anomalies before a strong earthquake: A case study of the Saravan earthquake (April16th, 2013, MW=7.8, Iran), Journal of Asian Earth Sciences; 173, 70–78.
Mohammadnejad, V. (1395). Active faulting and its effects on Quaternary landforms (alluvial fans) deformation in north-east of Lake Urmia, Iran, Quantitative Geomorphological Researches, No 1, 86-103.
Mohammadnejad, V; Asghari, S. (1394). Response of Garmsar east alluvial fans on horizontal and vertical displacement of faults (With emphasis on DehNamak fan), Quantitative Geomorphological Researches, No. 2, 1-17.
Negahban, S; Dortaj, D. (1398). Investigation of active tectonics in Sirvan watershed using morphometric indexes, Hydrogeomorphology, No 19, 187-209.
Masson, F.; Anvari, M.; Djamour, Y.; Walpersdorf, A.; Tavakoli, F.; Daigni`eres, M.; Nankali, H.; van Gorp, S. (2007). Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran, Geophys. J. Int., 170, 436–440.
Mayer, L., (1990). Introduction to Quantitative Geomorphology. Prentice Hall, Englewood Cliffs, New Jersey.
Nemati, Majid, (2019). Seismotectonic and seismicity of Makran, a bimodal subduction zone, SE Iran, Journal of Asian Earth Sciences; 169, 139–161.
Omidi, P. (1381). Detailed structural and dynamic analysis of fault zones in the southern margin of east alborz, Semnan-Damghan area, Ph.D Thesis in Tarbiat Modarres University.
Pérez-Peña, J.V., Azor, A., Azañón, J.M., Keller, E.A., (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology; 119, 74–87.
Rahimzadeh, Bahman; Shahram Bahrami; Mohammad Mohajjel; Hossein Mahmoudi; Farzad Haj-Azizi, (2019). Active strike-slip faulting in the Zagros Mountains: Geological and geomorphological evidence of the pull-apart Zaribar Lake basin, Zagros, NW Iran, Journal of Asian Earth Sciences, in press.
Regard, V., et al. (2005). Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran, Geophys. J. Int., 162, 177–203.
Sarkarinejad, Khalil; Farzane Goftari, (2019). Thick-skinned and thin-skinned tectonics of the Zagros orogen, Iran: Constraints from structural, microstructural and kinematics analyses, Journal of Asian Earth Sciences; 170, 249–273.
Solaymani Azad, Shahryar; Majid Nemati, Mohammad-Reza Abbassi, Mohammad Foroutan, Khaled Hessami, Stephane Dominguez, Mohamad-Javad Bolourchi, Majid Shahpasandzadeh (2019). Active-couple indentation in geodynamics of NNW Iran: Evidence from synchronous left- and right-lateral co-linear seismogenic faults in western Alborz and Iranian Azerbaijan domains, Journal of tectonophysics, Accepted Manuscript.
Strahler, A.N., (1952). Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 63, 1117–1142.
Troiani, Francesco; Jorge P. Galve, Daniela Piacentini, Marta Della Seta, Jesús Guerrero, (2014). Spatial analysis of stream length-gradient (SL) index for detecting hillslope processes: A case of the Gállego River headwaters (Central Pyrenees, Spain), Geomorphology; 214, 183–197.
Yamani, M; Alizadeh, SH. (1395). Investigation of Karaj river basin neotectonics using geomorphic indexes, Physical Geography Research, No, 31, 1-17.
Yamani, M; Maghsudi, M; Ghasemi, M.R; Jafarbiglo, M; Mohammadnejad, V. (1390). Comparative analyses of evolution of south slope of eastern Alburz alluvial fans (Damghan to Garmsar), Ph.D. Thesis in geomorphology, Tehran University.
Zhe Su, Ying-Hui Yang, Yong-Sheng Li, Xi-Wei Xu, Jingfa Zhang, Xin Zhou, Jun-Jie Ren, Er-Chie Wang, Jyr-Ching Hud, Shi-Min Zhang, Morteza Talebian, (2019). Coseismic displacement of the 5 April 2017 Mashhad earthquake (Mw 6.1) in NE Iran through Sentinel-1A TOPS data: New implications for the strain partitioning in the southern Binalud Mountains, Journal of Asian Earth Sciences; 169, 244–256.