نوع مقاله : پژوهشی

نویسندگان

1 استادیار گروه مهندسی منابع طبیعی- آبخیزداری، دانشکده منابع طبیعی دانشگاه یاسوج

2 2- دانش آموخته کارشناسی ارشد جنگلداری، گروه مهندسی منابع طبیعی، دانشگاه یاسوج

3 استادیار، گروه مهندسی محیط زیست، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء بهبهان

چکیده

تحقیق حاضر با هدف برآورد فرسایش خاک در حوزه آبخیز سد مخزنی در حال احداث تنگ سرخ با مساحت 39 هزار هکتار در شرق و جنوب شرقی شهرستان بویراحمد در استان کهگیلویه و بویراحمد با استفاده از مدل RUSLE و قابلیت‌های سنجش از دور و سیستم اطلاعات مکانی به منظور برنامه‌ریزی اقدامات حفاظتی در حوزه آبخیز سد انجام شده است. لایه پارامترهای مدل RUSLE شامل فرسایندگی باران، فرسایش‌پذیری خاک، شیب و طول دامنه، مدیریت پوشش گیاهی و عملیات حفاظت خاک به ترتیب با استفاده از داده‌های بارندگی، ویژگی‌های فیزیکی و شیمایی خاک، مدل رقومی ارتفاع و کاربری اراضی در محیط سامانه اطلاعات مکانی تهیه شده‌اند و پس از رویهم‌گذاری لایه‌ها، مقدار فرسایش به صورت مکانی در سطح حوزه برآورد شد. مقدار عامل فرسایندگی باران از 62/179 تا 74/327 مگا ژول در میلی‌متر بر هکتار ساعت سال (MJ mm ha−1 h−1 year−1) بود. عامل فرسایش‌پذیری خاک از 08/0 تا 46/0 تن هکتار ساعت بر هکتار مگاژول میلی‌متر (t ha h ha−1 MJ−1 mm−1) بود. کمترین و بیشترین مقدار عامل شیب و طول دامنه به ترتیب 08/0 و 42/12 بود. بیشترین و کمترین مقدار عامل مدیریت پوشش گیاهی به ترتیب 33/0 و 54/0 بود. بیشترین و کمترین مقدار عامل عملیات حفاظت خاک به ترتیب 5/0 و 1 بود. حدود 80 درصد منطقه مورد مطالعه دارای میزان فرسایش 35 تن در هکتار در سال است که بیشترین مقدار آن در قسمت‌های غربی و شمال شرقی است که آن هم ناشی از مقدار زیاد فرسایندگی باران و فرسایش‌پذیری خاک در این منطقه است.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

Estimation of Soil Erosion in the Tang-e-Sorkh Dam Watershed Using the Revised Universal Soil Loss Equation (RUSLE) and Remote Sensing (RS) and Geographic Information System (GIS) Capabilities

نویسندگان [English]

  • Mohsen Armin 1
  • Hadis Valinejad 2
  • Vajihe Ghorbannia Kheybari 3

1 Assistant professor of Natural Resources Engineering Department-Watershed Management, Natural Resources Faculty, Yasouj University

2 M.Sc Graduated of Forestry, Department of Natural Resources Engineering, Yasouj University

3 Assistant Prof., Department of Environmental Science, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology

چکیده [English]

1-Introduction
On a national scale, soil erosion in Iran, has an important effect on agricultural production, sedimentation in dam reservoirs, soil degradation and so on. Severe soil erosions and the subsequent high deposition of sediments in dam reservoirs and reduced soil fertility are serious environmental problems with dangerous economic consequences for the country. The situation of sedimentation in Iranian dams indicate that their design have often focused on civil engineering and structural aspects and no attention has been paid to the issue of erosion and sediment yield in the basin of dams, which makes a large amount of sediment be deposited in many of these dams for many years; this causes a lot of sediment after many years to be deposited in many of these dams` reservoir, as a result of which, the useful life of the dam is greatly reduced. The present study aimed at estimating soil erosion in the Tang-e-Sorkh dam watershed with a total area of 39,000 hectares in the east and south-east of Boyer Ahmad County in Kohgiluyeh and Boyerahmad province using the RUSLE model and the remote sensing (RS) and

 

Geographic Information System (GIS) capabilities in order to plan protective measures in the dam watershed.
2-Methodology
Digital altitude, precipitation, physico-chemical properties of soil and satellite imagery data were used to estimate soil losses using RUSLE model in the Tang-e-Sorkh basin. First, the boundary of Tang-e-Sorkh watershed was drawn on a topographic map with a scale of 1: 50,000 in the geographic information system environment. The meteorological stations in and around the watershed were then identified and marked on the map. RUSLE has calculated the average annual soil erosion expected on a sloping land using Equation (1).
A=R.K.L.S.C.P                                                             (1)  
Where A is calculated as the average spatial loss of soil and the average time of soil loss per unit area is expressed in terms of units selected for K and the time period selected for R. In practice, these units are usually selected so that A is expressed in tons, per hectare, per year (t ha-1 year-1). R Runoff-rain erosivity factor is expressed in MJ mm ha-1 h-1 year-1, K Soil erodibility factor which is the amount of soil loss per unit area of erosion index for a given soil- is obtained by measuring in a standard plot with a length of 22.1 meters, a slope of 9% and a permanent fallow and is expressed in t ha h ha−1 MJ−1 mm−1. L is the slope length, S is the slope, C is the plant cover management factor and P is the protective measures factor. The parameters L, S, C and P are without units. The layer of parameters of the RUSLE model includes rainfall erosivity (R), soil erodibility (K), slope and length of the hill (LS), vegetation management (C), and soil conservation operations (P) have been prepared in geographic information system environment and after overlayering, the amount of erosion was estimated locally.
3-Results and Discussion
The amount of rainfall erosivity was from 179.62 to 327.77 MJ mm ha-1 h-1 year-1. Erodibility factor was from 0.08 to 46.0 t ha h ha−1 MJ−1

 
mm−1. The minimum and maximum values of slope and hill length were 0.08 and 12.42, respectively. The minimum and maximum values of vegetation management were 0.33 and 0.54, respectively. The minimum and maximum values of soil conservation operations were 0.5 and 1, respectively. The amount of soil erosion in the studied area varied between 0.0033 and more than 100 tons per hectare per year at the pixel level. About 80% of the studied area had an erosion rate of 35 tons per hectare per year, with the highest amount in the western and northeastern parts of the country, which was due to high rainfall erosivity and soil erodibility in the area.
4- Conclusions
It can be said that in the current situation of Tang-e-Sorkh watershed, due to the lack of real sediment statistics, the best model for estimating erosion and sediment yield with the aim of introducing soil protection measures at the basin level was RUSLE model. The proposed method and the results of this research can be used as a dam maintenance planning system. The RUSLE model could predict the potential of soil erosion as a cell-by-cell, which was very useful when trying to identify the spatial pattern of current soil losses within a large area. Spatial information systems can be used to separate and inquiry these locations to assess the role of effective variables in the amount of soil erosion potential observed. Regarding the results, decision makers need to manage the risk of soil erosion in the most effective way; and management scenarios can adopt the best ways to improve and rehabilitate the basin based on the priority of different areas of the basin.

کلیدواژه‌ها [English]

  • Estimation
  • Revised Universal Soil Loss Equation
  • Remote Sensing
  • Geographical Information System
  • Tange-e- Sorkh
 
Ahmadi, A., Mohammad Nia, A., & Golshani, N. (2016). Sensitivity Analysis of Geomorphological Variables Affecting Floods Using HEC-HMS Model (Case Study: Zar Cheshmeh Hunjan - Isfahan Province), Journal of Hydrogeomorphology, 3, 21-42.
Ahmadi, H., & Dadashi Rudbari, A. (2016). Rainfall-Runoff Modeling for Flood Risk Management (Case Study: Haraz Region), Rescue Research Journal, 4, 52-72.
Alemawe, B.F. (2013). Assessment of Sedimentation Impacts on Small Dams—A Case of Small Reservoirs in the Lotsane Catchment. Journal of Water Resource and Protection, 5, 1127-1131.
Ansari lari, A., & Ansari, M. (2016). Investigation of GIS application for estimating soil erosion and sediment load using RUSLE model (Case study: Qala-e-Chay basin). Journal of Geography and Regional Development, 14 (2), 155-173.
Asadi, H., Honarmand, M., Vazifedoust, M., & Moussavi, A. (2017). Assessment of changes in soil erosion risk using RUSLE in Navrood watershed, Iran. Journal of Agricultural Sciences and Technology, 19(1), 231-244.
Azimi Sardari, M.R., Bazrafshan, O.A., Panagupulus, T., & Rafiei Sardoei, E. (2019). Current and future assessment of soil erosion in the catchment area of Esteghlal Dam in Minab using RUSLE-3D model and climate change scenarios. Desert Management, 7 (14), 132-119.
Babaei, M., Hoseini, S.Z.A., Nazari Samani, A.A., & Almodaresi, S.A. (2015). Soil erosion zoning using RUSLE 3D model, Case study: Can basin. Journal of Watershed Engineering and Management, 8(2), 165-181.
Dabral, P.P., Baithuri, N., & Pandey, A. (2008). Soil erosion assessment in a hilly catchment of North Eastern India using USLE GIS and remote sensing. Water Resources Management, 22(12): 1738-1798.
Dastranj, A., Asadi Nlivan, O., Falah, S., Salehnasab, A., & Jafari, SH. (2015). Estimation of annual erosion and sediment using EPM and GIS models (Case study: Zidasht, Taleghan). Hydrogeomorphology, 4, 39-55.
Drzewiecki, W., Wezyk, P., Pierzchalski, M,, & Szafranska, B. (2014). Quantitative and qualitative assessment of soil erosion risk in małopolska (Poland), Supported by an Object-Based Analysis of High-Resolution Satellite Images. Pure and Applied Geophysics, 171: 867–895.
Fernandez, C., Wu, J.Q., & McCool, D.O. (2003). Estimating water erosion and stimated yield with GIS, RUSLE and SEDD. Journal of Soil and Water conservation, 58(3), 128-136. 
Ferro, V., Giordano, G., & Lovino, M. (1991). Isoerosivity and erosion risk map for Sicily. Hydrological ScienceJournal, 36 (6), 549-564.
Gasnari, B.P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS- A case study of Nethravati Basin. Geoscience Frontiers, 7, 953-961.
Gitas, I. (2009). Multi temporal soil erosion risk assessment in N Chalkidiki Using a modified USLE raster model. EARSEL EProceedings, 8.
Hoyos, N. (2005). Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena, 63, 85-108.
Ijam, A.Z., & Tarawneh, E.R. (2012). Assessment of sediment yield foe Wala dam catchment area in Jordan. European Water, 38, 43-58.
Jha, K., & Paudel, C. (2010). Erosion Prediction by empirical models in a mountainous watershed in Nedpal. Journal of Spatia Hydbrology, 10(1), 89-102.
Khanchoul, K., Benslama, M., & Remini, B. (2010). Regressions on Monthly stream discharge to a reservoir in Algeria. Journal of Geography and geology, 2(1).
Kim, J.B, Saunders, P., & Finn, P.T. (2005). Rapid assessment of soil erosion in the Rio Lempa Basin Lempa. Center America, using the universal soil loss equation and geographic information system. Environmental Management, 36(6), 872-885.
Kothyari, U.U., Tewari, A.K., & Singh, R. (1994). Prediction of sediment yield. Journal of Irrigation and Drainage Engineering ASCE, 120(6), 1122-1131.
Lal, R. (1990). Soil Erosion in the Tropics. Principles and Management. McGraw-Hill, New York, 580p.
Lee, G.S., & Lee, K.H. (2006). Scaling effect for estimation soil loss in the RUSLE model using remotely sensed geospatial data in Korea. Journal of Hydrology and Earth system Sciences, 3,135-157.
Lu, Hua, Prosser Ian, P, Moran Chris, J, Gallant John, C, Priestley Graeme, Stevenson, Janelle, G, (2003). Predicting sheetwash and rill erosion over the Australian continent. Australian Journal of Soil Research, 41, 1037-1062.
Mokhtari, L.G., Shafiei, N., & Rahmani, A. (2018). Estimation of soil erosion using RUSLE model, a case study of Noorabad Mamasani basin. Hydrogeomorphology, 17, 1-21.
Nearing, M.A, Jetten, V, Baffaut, C, Cerdan, O, Couturier, A, Hernandez, M, Le Bissonnais, Y, Nichols, M.H, Nunes, J.P, Renschler, C.S, Souchre, V, & Van Oost, K. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 61,131-154.
Remortel Van, R., Hamilton, M., & Hickey, R. (2001). Estimating the LS factor for RUSLE through iterative slop length processing of digital elevation data. Cartography, 30(1), 27-35.
Renard, K.G., & Ferreira, V.A. (1993). RUSLE model description and database sensitivity. Journal of Environmental Quality, 22(3), 458–466.
Renard, K.G., & Freimund, J.R. (1994). Using monthly precipitation data to estimate the R factor in the revised USLE. Journal Hydrological, 157, 287-306.
Rendard, K.C., Foster Yoder, D., & Et Maccol, D. (1997). RUSLE Revised: status, questions, answers and the future. Journal of Soil Water Conservation, 49, 213-220.
Renschler, C.S., Mannaerts, C., & Diekkruger, B. (1999). Evaluating spatial and temporal variability in soil erosion risk-rainfall erosivity and soil loss ratios Andalusia, Spain. Catena, 34, 209-225.
Rezaei, P., Faridi, P., Ghorbani, M., & Kazemi, M. (2014). Estimation of soil erosion using RUSLE model and identification of its most effective factor in Gabrik watershed-southeast of Hormozgan province. Quantitative Geomorphological Research, 3 (1), 113-97.
Saha, S.K. (2003). Water and Wind Induced Soil Erosion Assessment and Monitoring Using Remote Sensing and GIS. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, 315-330.
Shinde, K.N., & Manjushree, S. (2010). Prioritization of micro watersheds on the basis of soil erosion hazard using remote sensing and geographic information system. International Journal of Water Resource and Environmental Engineering, 2(3), 130-136.
U.S. Department of Agriculture Natural Resources Conservation Service (USDA-NRCS), (1999). National Soil Survey Handbook: Title 430-VI. U.S. Government printing office, Washington D.C.
Vaezi, A., Abasi, M., & Haji Maleki, KH. (2017). Evaluation of RUSLE model combined with remote sensing and GIS in small drainage areas in the semi-arid region, northwestern Iran. Iranian Journal of Watershed Management Science and Engineering, 11 (38), 1-10.
Wischmeier, W.H., & Smith, B.D. (1978). Prediction rainfall erosion losses. A Guide for Conservation Planning Agriculture, Department of Agriculture. Agriculture Handbook, 58,537.
Wischmeier, W.H., Johnson, C.B., & Cross, B.V. (1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil Water Conservation, 26, 189–192.
Wishmeier, W.H., & Smaith, D.D. (1978). Prdeicting Rainfall Erosion Losses: a Guide to conservation pianning. Agriculture Handbook, 282 USDA-ARS. USA.    
Xu, Y.Q., Shao, X.M., & Peng, J. (2009). Assessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou province, chin. Environmental Geology, 56, 1643-1652.
Yu, B., & Rosewell, C.J. (1996). A robust estimator of the R factor for the Universal Soil Loss Equation. Trans, American, Society, Agriculture, Engineering, 39(2), 559-561.