نوع مقاله : پژوهشی

نویسندگان

1 عضو هیات علمی دانشکاه سید جمال الدین اسدآبادی

2 استادیارگروه مهندسی نقشه‌برداری، دانشگاه سید جمال‌الدین اسدآبادی، اسدآباد، ایران

چکیده

سیل به‌عنوان یک مخاطره طبیعی از عوامل مختلف طبیعی و انسانی ناشی می‌گردد. بدون شک میزان تأثیرگذاری این عوامل بر بروز سیل یکسان نیست و شناسایی میزان اثرگذاری و وزن هر یک از پارامترهای تأثیرگذار بر سیل از ضروریات است. این تحقیق میزان اثرگذاری عوامل طبیعی ایجاد سیلاب ازجمله اقلیم (شدت، مدت و احتمال وقوع بارش و مانند آن) و دیگر پارامترهای هیدرولوژیکی مؤثر بر آن را شناسایی کرده و به تشخیص مناطق پرخطر و سیل‌خیز در سطح استان همدان پرداخته است. مدل انتخابی برای این تحقیق مدل آنتروپی شانون (روش ترکیبی داده‌ای – کارشناسی) است که بر اساس داده‌های اقلیمی، هیدرولوژی و توپوگرافی توأم با نظریات کارشناسی اقدام به وزن‌دهی به عوامل طبیعی مؤثر در بروز سیلاب شده است. بر این اساس بیشترین وزن را حداکثر 24 ساعته بارش داشته است. نتایج نشان می‌دهد این پارامتر مؤثرترین عامل طبیعی ایجادکننده سیل در استان همدان است. عوامل پوشش گیاهی، زمان ذوب برف، شیب حوزه، جنس زمین وضریب گراولیوس به ترتیب بیشترین اوزان را به خود اختصاص داده‌اند. بر اساس اوزان نهایی نقشه خطر با استفاده از سیستم اطلاعات جغرافیایی ترسیم شد که نشان می‌دهد مناطق با خطرپذیری بسیار زیاد در مناطق مرکزی و جنوبی استان واقع‌شده است. بیشتر شهرستان‌های استان در مناطق با خطرپذیری زیاد قرار گرفته‌اند. بر این اساس در شهرستان‌ها مناطق آسیب‌پذیر بیشتر در حریم سیلابی رودخانه‌ها واقع‌شده است.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

Analysis of the effect of factors affecting flooding in Hamadan province using Shannon entropy model and GIS

نویسندگان [English]

  • Zohreh Maryanaji 1
  • Abozar Ramezani 2

1 Assistant professor, Department of Geography, University of Sayyed Jamaleddin Asadabadi, Asadabad, Hamadan, Iran

2 Assistant Professor , Department of Geomatics, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran.

چکیده [English]

1- Introduction
Natural hazards cause enormous damages every year. Among the natural hazards, floods, earthquakes, and droughts have special importance in financial and human losses. Meanwhile, according to the available statistics and information, floods in some parts of the world, especially in Asia and Oceania, have the highest damage. Iran is one of the arid and semi-arid regions of the world with particular climatic conditions. Inappropriate spatiotemporal distribution of rainfall in such regions has caused devastating floods. In this study, flood vulnerable areas are identified by determining the effective parameters of flood using Shannon entropy model. The results of this study can be used in flood zoning and forecasting and planning and management of water resources in the region.
2- Materials & Methods
In multi-criteria decision-making problems having and knowing the relative weights of the existing indicators is a significant step in the problem-solving process. (Relations 1 to 6).
 

 






(1)
 


Aij=




(2)

 



(3)

 



(4)


Ej=  i=1,2…,m                                      




(5)


wj=dj/∑dj




(6)


wj=





Entropy method is one of the multi-criteria decision-making methods for calculating the weight of criteria. This method requires a criterion-option matrix. The steps of Shannon entropy method consist of five steps of the decision matrix, normalization of the decision matrix, calculation of the entropy of each index, the calculation of deviation, and calculation of weight value Wj.
 

 

In the Shannon method using the experience and knowledge of experts appropriate factors are determined and weighed. After collecting the questionnaire data and considering the geography of the study area, the scores of each factor are adjusted.
3- Results & Discussion
Natural parameters of flood occurrence in Hamadan province include: climate, snowmelt, slope, soil type, Gravilius coefficient, and vegetation. Due to the climatic characteristics of the province, most of the province's rainfall is due to the Mediterranean systems. In winter, the rains are in the form of snow, and in the early spring the melting of snows is accompanied by spring rains which most of the time causes the rivers to overflow. Due to the severe destruction of vegetation in the province, the potential of the region in flooding has been increased. In general, it can be said that the occurrence of floods in any region is due to the confrontation and alignment of human and natural factors. This study only examines the natural causes of flood. The study of the effect of each parameter in the occurrence of floods based on the data-expert method showed that the six factors studied in these studies do not have the same effect on reducing or increasing floods in the basins.
4- Conclusion
Based on scoring the natural factors that cause floods, according to the intensity of their impact, the flood-prone areas of the province have been identified. Based on the combined data model and Shannon entropy, the highest weighting was given to the maximum 24-hour precipitation. Vegetation factors, snow melting time, basin slope, soil type and Gravilius coefficient were identified as the most effective natural factors in causing floods in Hamadan province, respectively. Based on the final weights, a hazard map was drawn using the GIS. According to the hazard map, the very high risk regions are located in the central and southern parts of the province. Also, the northern areas including the cities of Razan, Kaboudar Ahang and Dargazin are located in high risk area.

 
Using the results of this study, it is possible to identify the approximate time of flood occurrence and flood-prone areas in Hamedan province.

کلیدواژه‌ها [English]

  • Shannon entropy model
  • GIS
  • Impact
  • Flood
  • Hamadan County
 
Ahmadi, A., Mohammad Nia, A., & Golshani, N. (2016). Sensitivity Analysis of Geomorphological Variables Affecting Floods Using HEC-HMS Model (Case Study: Zar Cheshmeh Hunjan - Isfahan Province), Journal of Hydrogeomorphology, 3, 21-42., In Persian.
Banihabib, M., Arabi, A., (2016). The impact of catchment management on emergency management of flash-flood. International Journal of Emergency Management, 12: 185-195, In Persian.
Barriendos, M., Gil-Guirado, S., Pino, D., Tuset, J., Pérez-Morales, A., Alberola, A., & Ruiz-Bellet, J. L. (2019). Climatic and social factors behind the Spanish Mediterranean flood event chronologies from documentary sources (14th–20th centuries). Global and Planetary Change, 182, 102997
Bashir Gonbad, M, Moghadamnia, A, Sigaroudi, S., & Mahdavi, M, (2018). A Comparative Study of Frequency and Hydro-Climatic Analysis Methods for Estimating Maximum Flood Flow, Journal of Natural Resources, Volume 71, Number 3, pp.595 – 612, In Persian.
Benjamin, B., Patrick, H., Zhengyu, Z., & Damian, B. (2019). The multimedia satellite task at mediaeval 2019: Emergency response for flooding events.
Chitsaz, N., Banihabib, M.E. (2015). Comparison of different multi criteria decision-making models in prioritizing flood management alternatives. Water Resources Management, 29: 2503-2525.
Endreny T. A. and Wood, E. F. (2001). Representing elevation uncertainty in runoff modelling and flowpath mapping. Hydol. Process., 15: 2223-2236.
European Environment Agency (EEA). (2016). Floodplain management: reducing flood risks and restoring healthy ecosystems, available at https://www.eea.europa.eu/highlights/floodplain-management-reducing-flood-risks.
Fudey and Schepers.j. (2004). Application of remote sensing in site- specific Adamchuk.V,Perk.R management.Institute of agriculture and natural resources. University of Nebraska Cooperative Extension Precision Agriculture EC
Goodarzi, L., Banihabib, M.E., Roozbahani, A., Dietrich, J. (2019). Bayesian network model for flood forecasting based on atmospheric ensemble forecasts. Hazards Earth Syst. Sci. Discuss.
Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A. X.,... & Kazakis, N. (2018). Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of The Total Environment, 621, 1124-1141.
Maghsood, F. F., Moradi, H., Bavani, M., Reza, A., Panahi, M., Berndtsson, R., & Hashemi, H. (2019). Climate Change Impact on Flood Frequency and Source Area in Northern Iran under CMIP5 Scenarios. Water, 11(2), 273
Marofi, S., Golmohammadi, G., Mohammadi, K. and Zare, Abyaneh H. (2010). .Evaluation of Geostatisical Methods for Estimating Spatial Distribution of Annual Rainfall in Hamedan Province, Iran in GIS Media. J. Agri. Sci,501-514, In Persian.
Maryanaji, Z. (2003). Comprehensive flood plan in Hamadan province, Hamadan Management and Planning Organization, pp. 205, In Persian.
Maryanaji, Z., and Marofi, S. (2005). Investigation of maximum daily rainfall’s runoff in the Gharachay catchment using GIS and application of SCS model. J.A gri. Res. 5:3.71-83. , In Persian.
Maryanji, Z, Abbasi, H. (2016). Zoning the probability of maximum daily rainfall in Hamadan province, Sepehr Geographical Information Quarterly, Volume 25, pp. 89-96, In Persian.
Melesse, A. M., Graham, W. D. and Jordan, J. D. (2003). Spatially distributed watershed mapping and modeling: GIS-Bassed strom runoff response and hydrograph analysis: Part 2, Journal of Spatial Hydrology, 3(2): 1-28.
Mohammadnejad, M, Mokhtari,L ., & Behniafar,A.( 2020). Flood risk zoning in Kalat river basin (sub-basin leading to Kalat city). Quantitative Geomorphological Research, 8 (3), pp.203-221, In Persian.
Nasrinnejad, N, Rangzan, K, Kalantari, N., & Saberi, A. (2014). Flood potential zoning of Baghan catchment using fuzzy hierarchical analysis (FAHP), Remote sensing and GIS in natural resources, 5 (4), 15-34, In Persian.
Negaresh, H., & Yari, Yasman. (2013). Risk and Crisis Management Analysis of Environmental and Environmental Risks in Lorestan Province. Geography and Environmental Hazards, 2 (5), 107-126, In Persian.
Nozari, H, Razavian, S, Nabavi Hamedani, S. (2014). Identification of hydrological units affecting the peak flood discharge in the Hamedan-Bahar basin. Journal of Watershed Engineering and Management, Vol. 6, pp. 201-210, In Persian.
Old, J., McKnight, D., Bennett, R., & Grzybek, R. (2019. A catchment partnership approach to delivering natural flood management in the Evenlode, UK. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability (172(7), 327-334). Thomas Telford Ltd.
Pappenberger, F., Cloke, H. L., Parker, D. J., Wetterhall, F., Richardson, D. S., Thielen, J. (2015). The monetary benefit of early flood warnings in Europe, Environmental Science and Policy, 51: 278–291.
Parishan, M. (2011). Reducing Vulnerability to Natural Hazards (Earthquake) Using Risk Management Approach (Case Study: Rural Areas of Qazvin Province). PhD Thesis in Geography and Rural Planning, Tarbiat Modares University, pp. 318,612, In Persian.
Poor Taheri, M, Einali, J., & Rokn al-Din Eftekhari, A. (2010). The role of capacity building in reducing the effects of natural hazards (earthquake) in rural areas with emphasis on quantitative methods (Case study: earthquake-prone areas of Khodabandeh city). Human Geography Research, 42 (74) pp. 23-39, In Persian.
Poor Taheri, M, Sajasi, H., & Sadeghlou,T. (2011). Comparative evaluation of natural hazard rating methods in rural areas (Case study: Zanjan province). Rural Research, 2 (7) pp. 31-54, In Persian.
Rahman, A., & Barman, S. (2019). Perception on Flood Impact and Source of Employment of Farmers in Flood Affected Areas of Assam. Int. J. Curr. Microbiol. App. Sci, 8(7), 645-651.
Rezaei Moghaddam, M., Hejazi, M., Behbuodi,A. (2019). A Calibration and Dvaluation of IHACRES Model in Runoff Simulation the Lanbaran Sub-basin, Ahar Chay , Journal of Hydrogeomorphology, 20, 187-204., In Persian.
Rostami Khalaj,M, Hesami, D, Salmani,H ., & Teymourian,T, (2020). Zoning of urban flood risk using multivariate decision making method (Case study: Imam Ali town, Mashhad city). Journal of Environmental Science and Technology, 21 (11), 173-185, In Persian.
 Sadeghloo, T, Sajasi Gheidari, H, (2014). Flood Risk Management Strategies in Rural Areas with SWOC-TOPSIS Model (Case Study of Qarachai Ramyan Watershed). Geography and Environmental Hazards, 12, PP 105-128, In Persian.
Salahshouri, P., & Vafainejad, Alireza, (2012). Monitoring the flood changes of Karkheh river plains due to the construction of Karkheh reservoir dam using remote sensing and GIS. Remote Sensing and GIS in Natural Resources, 3 (3) 85-97, In Persian.
Shadmani, M, Maroofi, S, Mohammadi, Kourosh, & Sabzi Parvar, A, (2011). Modeling of flood discharge areas in Hamadan province using artificial neural network, Journal of Soil and Water Conservation, Vol. 18, pp 21- 42, In Persian.
Stephen, J. C. (1991). Integrating multi-criteria evaluation with geographical information systems. International Journal of Geographical Information System 5(3), 321-339.
Vercruysse, K., Dawson, D. A., Glenis, V., Bertsch, R., Wright, N., & Kilsby, C. (2019). Developing spatial prioritization criteria for integrated urban flood management based on a source-to-impact flood analysis. Journal of Hydrology, pp.578, 124038
Wang, X.D.,Zhong, X.H.,Liu, S.Z.,Wang, Z.Y.,Li, M. H. (2008).Regional assessment of environmental vulnerability in the Tibetan Plateau: Development and application of a new method, Journal of Arid Environment. 72(10),1929-1939.