نوع مقاله : پژوهشی

نویسنده

استادیار گروه جغرافیا دانشگاه پیام نور، ایران

چکیده

دشت ماهیدشت به علت نزدیکی به شهر کرمانشاه دارای تأسیسات صنعتی متعددی بوده و از اهمیت کشاورزی بالای برخوردار است. توسعه­ی فعالیت­ های انسانی و رخ­داد خشکسالی­ ها در چند دهه ­ی گذشته سبب محدودیت تغذیه و کاهش سطح ایستابی منایع آب زیرزمینی در این حوضه شده است. بنابراین شناسایی مناطق مناسب تغذیه­ ی آب زیرزمینی در حوضه­ ی آبریز ماهیدشت ضروری به نظر رسیده و هدف پژوهش نیز پهنه­ بندی مناطق مستعد تغذیه­ ی منابع آب زیرزمینی در حوضه­ی مورد مطالعه است. روش شاخص پتانسیل تغذیه­ی مبتنی بر هشت پارامتر تراکم­خطواره، تراکم­زهکشی، کاربری­اراضی، شیب­توپوگرافی، خاک، بارش­سالانه و ژئومورفولوژی بوده و بر اساس روش ترکیب خطی وزنی محاسبه می­گردد. نتایج پژوهش نشان داد، که 62% مساحت حوضه در پهنه­ ها­ی با پتانسیل خیلی ­زیاد و زیاد تغذیه­ ی آب زیرزمینی قرار گرفته است. دشت آبرفتی ماهیدشت و نواحی تپه­ ماهوری و فرسایشی حاشیه این دشت به ترتیب در پهنه­ی با پتانسیل تغذیه خیلی­ زیاد و زیاد واقع­ شـده ­اند. پهنه ­های با پتانسیل متوسط و کم تغذیه­ ی آب زیرزمینی منطبق بر نواحی کوهستانی در شمال و جنوب حوضه بوده و پارامتر لیتولوژی عامل اصلی افتراق این دو پهنه از یکدیگر می­باشد. به علت مساعدت شرایط زمین­ شناسی و جغرافیایی پهنه­ های مناسب تغذیه ­ی آب زیرزمینی حدود 80% از مساحت حوضه را در برگرفته ­اند. بستر و حاشیه رودخانه مَرِگ و سطح دشت ماهیدشت مناسب ­ترین شرایط را برای تغذیه­ ی منابع آب زیرزمینی داشته ­اند. بر اساس نتایج این پژوهش می­توان، با ایجاد طرح­ های تغذیه ­ی مصنوعی در حاشیه­ی دشت ماهیدشت و جلوگیری از ساخت­ وسازهای گسترده در مناطق با پتانسیل تغذیه­ ی زیاد و خیلی زیاد را جهت مدیریت منابع آب زیرزمینی حوضه پیشنهاد داد.

تازه های تحقیق

-

کلیدواژه‌ها

عنوان مقاله [English]

Zoning Areas in Need of Underground Water in the Catchment Basin of Mahi Dasht Kermanshah

نویسنده [English]

  • Mansor Parvin

Assistant Professor of Geography group, PNU, Iran

چکیده [English]

1-Introduction
In recent decades, the demand for water has intensively increased in arid and semi-arid regions of Middle East and North Africa (Souissi et al., 2019:1, 2). Nowadays extensive use of underground water resources has been converted to a challenge in arid and semi-arid regions (Gaur 2 et al., 2011). Excessive use of underground water resources may cause problems such as the reduction of water level, the reduction of quality and pollution of underground water, which can cause water tension (Souissi et al., 2019, 2). To cope with this hydrologic crisis, optimal programming and management of underground water resources seems essential (Singh et al., 2017, 1440:3). Mahi Dasht plain is one the most important plains of agriculture in Kermanshah and the country and had a significant share in the production of various rainfed and irrigated agricultural products. Underground water resources of Mahi Dasht as the main source of providing the required main water of human societies of Mahi Dasht catchment area has faced the reduction of water level due to improper harvesting and the occurrence of droupht. Zoning and identifying regions in need of being recharged by underground water of Mahi Dasht plain has had an important role in the management and recovery of the balance of these resources and the conduction of this study was a necessity. The purpose of this study was zoning and identifying those regions who are in need of being recharged by underground water of Mahi Dasht using potential recharge index method. 

 

2- Methodology
In this study, eight parameters of lineaments, drainage density, land use, topography slope, soil, annual rain and geomorphology in potential recharge index method for zoning regions in need of being recharged by underground water were utilized. Each of these eight parameters can be divided into low, moderate, high and very high classes based on their nature and the amount of effect in feeding underground water (Table 1). Based on the categorization of Shaban et al., (2006), each of the classes allocated the following scores to themselves: low class (score 1 to 2 ), moderate class (score 2 to 4), high class (score 4 to 6) and very high class (score 6 to 8). Each of these eigth parameters had their specific weights and lithology parameter of 33% as well as soil parameter of 3% had the most and the least weights (Table 1). Finally, the eigth parameters were scored based on Table 1 and according to the WLC method, they were integrated using the following equation and the RP was provided.
Pr=(RFw*RFr)+(LGw*LGr)+(GGw*GGr)+(SGw*SGr)+(LDw*LDr)+(DDw*DDr)+(LCw*LCr)+(SCw +SCr)

3- Results and discussion

In the catchment basin of Mahi Dasht, almost 80% of the area had very high, high and moderate potential recharge. The reason behind this issue can be attributed to the appropriateness of geographical conditions and geology of the basin. According to lithology, almost 80% of the area of the studied basin was made up of quaternary deposits and carbonate makers; this issue had an utmost role in recharging underground water resources. In Mahi Dasht basin, Mareg River follows the fault path of Mahi Dasht and mountain areas of the basin specially carbonate regions of that, are extremely tectonic, which leads to the more penetration and high recharging of the underground water resources.  Geomorphologic conditions of Mahi Dasht plain is appropriate for being recharged with underground water, since 43% of the area of the basin is made up of torrential-alluvial plain landforms and alluvial fans. Agricultural, garden and jungle uses have included 78% of the area of the studied basin; this

 
issue has an important role in recharging underground water resources of the basin. Almost 58% of the area of Mahi Dasht basin has soils with A and B hydrologic groups, which created appropriate potential recharge for the underground water of this basin.  Almost 80% of the area of the studied basin of the constructional plain level of Mahi Dasht has a slope of less than 10 degrees which contrives the appropriate condition for being recharged with underground water in the basin. The studied basin had a mean rain of 590 mm, which stated the appropriate raining condition of the basin for being recharged with underground water resources. Wide parts of Mahi Dasht basin especially in the foothills had a high drainage density, which had an utmost effect in the recharging of underground water resources. 
4-Conclusion
The level of Mahi Dasht plain has been located in an area having very high recharge potential due to the appropriateness of lithological, tectonic, geomorphologic-topographic, land use, soil and climate conditions. The area having very high recharge potential coincided on rough country regions and geomorphologic, slope and lithological conditions had the highest limitations. Moderate potential area coincided on north mountain basin. Bed outcrop of penetrative carbonate makers, the high lineaments` density and high rains caused moderate recharge potential in these regions. Most of the areas of south heights of the basin were located in the area having low recharge potential due to the bed outcrops of impenetrable makers of Kashkan, Amiran, Gorpi and Ladiolarite. Finally, it could be stated that Mahi Dasht basin wouldn’t face limitations in terms of appropriate areas for underground water resource recharging. The bed and margin of Mareg River and the level of Mahi Dasht plain and its surrounding areas were appropriate for underground water recourses` recharging.

کلیدواژه‌ها [English]

  • Groundwater resources
  • Water feeding potential PRI Model
  • Alluvial plain
  • Mahidasht Catchment area  
 
 Abdalla, F. (2012). Mapping of groundwater prospective zones using remote sensing and GIS techniques: A case study from the Central Eastern Desert, Egypt, Journal of African Earth Sciences, 70, 8-17.
Acharya, T., Kumbhakar, S., Prasad, R., Mondal, S., Biswas, A. (2019). Delineation of potential groundwater recharges zones in the coastal area of north-eastern India using geoinformatics, Sustainable Water Resources Management, 5(2), 533-540.
 
Achu, A. L., Reghunath, R., Thomas, J. (2019). Mapping of Groundwater Recharge Potential Zones and Identification of Suitable Site-Specific Recharge Mechanisms in a Tropical River Basin, Earth Systems and Environment, 1-15.
Al-Djazouli, M. O., Elmorabiti, K., Zoheir, B., Rahimi, A., & Amellah, O. (2019). Use of Landsat-8 OLI data for delineating fracture systems in subsoil regions: implications for groundwater prospection in the Waddai area, eastern Chad, Arabian Journal of Geosciences, 12(7), 241.
Bagheri Dadvokalaii, O., Mohammad Vale Samani, J,. Sarvarian, J., (2017). Determine the best place to implement groundwater artificial pond design by using two methods of boolean and AHP, Journal of Engineering Constuction Management, V. 02, 12-16.
Costa, A. M., de Salis, H. H. C., Viana, J. H. M., Leal Pacheco, F.A. (2019). Groundwater recharge potential for sustainable water use in urban areas of the Jequitiba River Basin, Brazil, Sustainability, 11(10), 2955.
Cotterman, K. A., Kendall, A. D., Basso, B., & Hyndman, D. W. (2018). Groundwater depletion and climate change: future prospects of crop production in the Central High Plains Aquifer, Climatic change, 146(1-2), 187-200.
Dinesh Kumar, P. K., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India, International Journal of Remote Sensing, 28(24), 5583-5601.
Eftekhari Ahandani, S,. Sheykh V.B, Noura N.,. Tabatabaee Yazdi S.J., Akhzari, D, (2014). Identifying and prioritizing the appropriate places in the underground water supply of watershed system (Case study: Golbahar watershed, Khorasan Razavi), J. of Water and Soil Conservation, 21(3(, 1-30.
  Entezari, M.,  Gholami,, M. (2014). Potential ground water resources of Romeshgan basin with GIS technique, Applied Geomorphology of Iran, 2(4), 31-43.
Gaur, S., Chahar, B. R., & Graillot, D. (2011). Combined use of groundwater modeling and potential zone analysis for management of groundwater, International Journal of Applied Earth Observation and Geoinformation, 13(1), 127-139.
Huang, C., et al.,( 2013). Groundwater recharge and exploitative potential zone mapping using GIS and GOD techniques. Environmental Earth Sciences, 68 (1), 267–280.
Jamour R. and Eilbeigy M. (2019). Site selection and determination of the most suitable artificial recharge method in the Minab Plain based on AHP method, J. Environ. Water Eng., 5(2), 166–173.  
Machiwal, D., Jha, M. K., Mal, B. C. (2011). Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques, Water resources management, 25(5), 1359-1386.
Neff, B.P., Piggott, A.R., and Sheets, R.A. (2006). Estimation of shallow groundwater recharge in the great lakes basin, Scientific Investigations Report2005–5284, U.S. Department of the Interior, U.S. Geological Survey, USA.
O’Leary, D.W., Friedman, J.D., Pohn, H.A., (1976). Lineament, linear, lineation: some proposed new standards for old terms, Geological Society of America Bulletin, 87 (10), 1463–1469.
Oikonomidis, D., Dimogianni, S., Kazakis, N., & Voudouris, K. (2015). A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece, Journal of Hydrology, 525, 197-208.
Olabode, O. F. (2019). Potential groundwater recharge sites mapping in a typical basement terrain: a GIS methodology approach, Journal of Geovisualization and Spatial Analysis, 3(1), 5.
Pareta, K., Pareta, U. (2011). Hydromorphogeological study of Karawan watershed using GIS and remote sensing techniques, International Scientific Research Journal, 3(4), 243-268.
Porhemat, J, Heydarizadeh, M,. Abdeh-Kolahchi, A,. Karimi,. Z, (2012). Interaction of groundwater and surface water in MahiDasht Aquifer, Journal of the Earth, in Issue 23. 65-79.
Punmia, B.C. and Jain, A.K., (2005). Soil mechanics and foundations, New Delhi: Firewall Media.
Ramisht, M H, (2009). Geomorphology Maps (Symbols and Permits), Samt Publications, First Edition, Winter 2009.
Ranjbarmanesh, N, Entezari, M, Ramisht, MH,(2013). Groundwater crisis caused by tectonic activity in Mahidasht plain, Applied Geomorphology of Iran, 1(4), 1-18.
Selvam, S., Magesh, N. S., Chidambaram, S., Rajamanickam, M., & Sashikkumar, M. C. (2015). A GIS based identification of groundwater recharge potential zones using RS and IF technique: a case study in Ottapidaram taluk, Tuticorin district, Tamil Nadu. Environmental earth sciences, 73(7), 3785-3799.
Senanayake, I.P., et al., (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques, Geoscience Frontiers, 7 (1), 115–124.
Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon, Hydrogeology Journal, 14(4), 433-443.‏
Singh, L. K., Jha, M. K., & Chowdary, V. M. (2017). Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply, Journal of cleaner production, 142, 1436-1456.‏
Souissi, D., Msaddek, M. H., Zouhri, L., Chenini, I., El May, M., & Dlala, M. (2019). Mapping groundwater recharge potential zones in arid region using GIS and Landsat approaches, southeast Tunisia, Hydrological sciences journal, 63(2), 251-268.‏
Viessman, J.R.W., Lewis, G.L., and Knapp, J.W., (1989). Introduction to Hydrology, 3rd ed. Singapore: Harper and Row, 780.
Yeh, H. F., Lin, H. I., Lee, C. H., Hsu, K. C., & Wu, C. S. (2014). Identifying seasonal groundwater recharge using environmental stable isotopes, Water, 6(10), 2849-2861.‏
Zaraii, M, (2010). Evaluation of Artificial Feeding Using Conceptual and Mathematical Modeling in Mahidasht Plain Aquifer, Master's thesis Razi University.
Zareei1, A, Zareei, S, Nekouei Esfahani, A, Kakapour, V, Kanani, B, (2019). Locating Suitable Lands for Artificial Nutrition of Groundwater Aquifers Using Regional Data and Satellite Images in Yazd Province, Environmental Science Studies, 4(1), 1132-1142.