References
-Deswal, Surinder, and Mahesh Pal. (2008), Artificial neural network based modeling of evaporation losses in reservoirs, International Journal of Mathematical, Physical and Engineering Sciences, No. 4, PP.177-181.
-Ma, Lili; Yun Wu, Jianwei Ji and Chaoxing He. )2011(, The prediction model for soil water evaporation based on BP neural network, Conference on Intelligent Computation Technology and Automation (ICICTA), International, Vol. 2, PP. 276-280.
-Felix Klein.(1979), Development of mathematics in the 19th century, Mathsci Press Brookline, Translated by M. Ackerman from Vorlesungen uber die Entwicklung der Matematik im 19 Jahrhundert, Springer, Berlin.
-Rajaee, T., Mirbagheri, S. A., Nourani, V., and Alikhani, A. (2010), Prediction of daily suspended sediment load using wavelet and neurofuzzy combined model, International Journal of Environmental Science & Technology, 7, No.1, PP. 93-110.
-Reddy, T. Agami. (2007), Application of a generic evaluation methodology to assess four different chiller FDD methods (RP-1275), HVAC&R Research Vol.13, No. 5, PP. 711-729.
-Tabari, H., Marofi, S., and Sabziparvar, A. A. (2010), Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression, Irrigation Science, Vol.28,No.5, PP. 399-406.
-Tabesh, M., and Dini, M. (2010), Forecasting daily urban water demand using artificial neural networks, a case study of Tehran urban water, J. of Water and Wastewater, Vol.21,No.1, PP. 84-95. (In Persian)
-Thomas, George B., Jr. Finney, Ross L.(1996),
Calculus and Analytic Geometry (9th ed.), Addison Wesley,
ISBN:
0-201-53174-7.
-Traore, Seydou, Yu-Min Wang, and Tienfuan Kerh.(2010), Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone, Agricultural Water Management ,Vol.97, No. 5, PP. 707-714.
-Zoqi, M.J., and Saeedi, M. (2011), Modeling leachate generation using artificial neural networks, J. of Water and Wastewater, Vol.22, No.1, PP. 76-84. (In Persian).