Hydrogeomorphology
Aghil Madadi; sayyad Asghari Saraskanrood; Hossein Hajatpourghaleroodkhany
Abstract
Monitoring of land use changes and destruction of vegetation as one of the dominant parameters in soil erosion is one of the important issues for assessment and control in natural resource management. The Hyrcanian forests of Gilan province, over the past years, have deteriorated due to neglect and have ...
Read More
Monitoring of land use changes and destruction of vegetation as one of the dominant parameters in soil erosion is one of the important issues for assessment and control in natural resource management. The Hyrcanian forests of Gilan province, over the past years, have deteriorated due to neglect and have taken on a different face. So; The purpose of this research is to reveal the changes in land use and the destruction of forest cover and its effects on soil erosion in the watershed of Ghaleroodkhan Fuman. For this purpose, the changes in land use that took place between 1371 and 1402 were extracted using Landsat images and object-oriented classification techniques and were classified (agriculture, forest, pasture, water, and residential). In the next step, by identifying the effective factors in the erosion of the area and preparing the information layers of each criterion in GIS, the standardization of the layers was done using the fuzzy membership function, the weighting of the criteria using the CRITIC method and the final modeling was done using the MARCOS multi-criteria analysis method. The study of the changes in watershed use shows that the forest cover in 1992, with an area of 222.17 square kilometers, had the largest area among the land uses, and in 2023, its area decreased to 205.03 square kilometers. Also considering the results; Residential use with an increase of 27.17 square kilometers has changed the most during the 30 years of study. According to the erosion zoning map, respectively; The area of the floor with very high and high erosion potential has increased from 18.04 and 31.05 percent in 1992 to 22.52 and 32.34 percent in 2023. According to the obtained results, it is possible to reduce the forest cover and convert it into residential areas, agricultural lands, and pastures, as well; He considered the conversion of agricultural lands to residential areas and the increase of residential and agricultural use in the boundaries and riverbeds as the most important factors involved in increasing the soil erosion potential of the basin.
Hydrogeomorphology
hasan Setayeshi Nasaz; sayyad Asghari Saraskanrood; Raoof Mostafazadeh; Aghil Madadi
Abstract
Rivers are very important in terms of human uses and ecological functions. In the present research, the environmental flow components of the Khiavchai River have been determined. Therefore, changes in the EFCs were determined using IHA software. According to the results, the values of low flows were ...
Read More
Rivers are very important in terms of human uses and ecological functions. In the present research, the environmental flow components of the Khiavchai River have been determined. Therefore, changes in the EFCs were determined using IHA software. According to the results, the values of low flows were high in the first period (1988 to 2017), but decreased in recent periods. Also, the decrease in the discharge values of the maximum flow indicators and the increase in the number of days with zero discharge to the number of 174 days were also caused by the change of the river regime. The amount of peak rate and decline rate components has increased in recent periods. The values of low flow duration indicators and low flow frequency have increased. Based on the change of flow dispersion index, the occurrence of strong or very low flows in the river has been intensified. According to the FDCs, in the early periods of the river flow regime, river flow was higher than 0.01cms during the year, while in recent periods it has decreased to less than 0.001cms. Based on the changes in the duration of the flow in recent periods, the duration of the river has changed to 50-60% of the days of the year with a very low discharge. Overuse of river flow changes in the flow regime, and successive droughts have increased the severity of the change in the flow regime and the deviation of the river conditions from the normal state.
Geomorphology
elnaz piroozi; Aghil Madadi
Abstract
AbstractSoil erosion is one of the most important problems in the watersheds of Iran, which causes the loss of thousands of tons of arable soil every year. The aim of the present study is to zoning the risk of soil erosion in Givi Chay watershed (northwestern Iran). In this study, first, the effective ...
Read More
AbstractSoil erosion is one of the most important problems in the watersheds of Iran, which causes the loss of thousands of tons of arable soil every year. The aim of the present study is to zoning the risk of soil erosion in Givi Chay watershed (northwestern Iran). In this study, first, the effective factors for erosion in the region were identified and then the information layers of each criterion were prepared in Geographic Information System (GIS). Valuation and standardization of layers was done using fuzzy membership function and criteria weighting, using critic method. Final analysis and modeling was performed using the Multi-Attributive Border Approximation Area Comparison (MABAC) method as one of the Multi-Criteria Decision Making (MCDM) methods. According to the results of the study, slope, land use, soil and lithology had the highest weight coefficient, respectively. Also, the results of the study showed; 283.89 and 414.93 km-square of the area, respectively, has a very high and high risk potential, and very high-risk and high-risk areas in unstable and erodible formations, agricultural uses and gardens and slopes of 25-40 % are located. It can be said that the results of this study indicate the high potential of the study basin in terms of erosion occurrence and it is necessary to control erosion and conservation measures on the agenda of experts and land managers. In addition, the results of validation of the results showed that the use of MABAC method has a high relative accuracy for studying the risk of erosion.
Aghil Madadi; Zohreh Bashokoh; Ehsan Ghale
Abstract
1-IntroductionOne of the most important wealth of a nation is the water that is flowing in the rivers of that country, and because of its impact on the settlement, site selection and development of villages, cities, communication networks and agriculture, it is of great importance since the past. Because ...
Read More
1-IntroductionOne of the most important wealth of a nation is the water that is flowing in the rivers of that country, and because of its impact on the settlement, site selection and development of villages, cities, communication networks and agriculture, it is of great importance since the past. Because of this, human attention has been given to river systems as one of the most vital constituents of the earth's surface in a variety of respects. River morphology is a multifaceted branch of earth science that may be considered as a specific geomorphological subject. One of the most important purposes of investigating river morphology is the geometric description of river bed parameters and interpretation of its main causes with the help of the theoretical knowledge base of water flow, solids and sediment transport. Changes in river morphology can cause many problems, including river diversion, flooding of surrounding areas, damage to hydraulic structures, as well as some environmental impacts. Short-term river variability may be gradual and continuous, but the long-term variability or under certain conditions, it is inconsistent and abrupt. One of the factors that can severely impair the stability of rivers is the construction of dams. Flow changes by the dam can affect the amount, timing, and duration of upstream and downstream currents. The purpose of this study was to investigate the morphological changes (patterns and dynamics) of the Gharasu River (from Samian Bridge to Sabalan Dam) over a period of 19-years (2000–2019). 2-MethodologyThe study area of the Gharasu River is approximately 51 km 2 in geographical coordinates of 48 ° 2 min to 48 ° 18 min east longitude and 38 ° 22 min to 38 ° 30 min north latitude in the political-administrative boundary of the city of Ardabil. The highlands of the region are mainly composed of Eocene volcanic rocks. There are also two Quaternary units of Qsc and Qst related to Sabalan volcanic activity. The study area is located in the geological division of Iran in the Alborz-Azerbaijan zone. In most of Iran's construction divisions, the Azerbaijan region has been considered the continuation of central Iran. Topographic maps, geological maps, Landsat, Sentinel and Google Earth satellite imagery, digital elevation model (DEM) images, and climatic and hydrometric data were used in the study. In order to quantify the meandering development of alluvial rivers and determine the behavioral pattern and its changes over time, the geometrical characteristics of rivers such as central angle, meander radius, wavelength, valley length and bending coefficient ( Sinusitis), were measured and analyzed to determine changes in the course of the river channel from the past up to the present. 3-Results and DiscussionThe mean radius of meanders for the entire Gharasu River channel during the study periods of 2000, 2010, and 2019 were 11.02, 100.90, and 99.40 meters; respectively, indicating a decreasing trend. The average length of arches during these years was 254.29, 250.24 and 251.74 meters; respectively. For this reason, over the years under the study, the mean central angle has an increasing trend from 138/50 in 2000 to 153/15 in 2010 and 157/41 in 2019. The mean curvature coefficients for the entire study period from the Gharasu River for the periods 2000, 2010 and 2019 were 1.58, 1.61 and 1.63;respectively. The values of this index during the years 2000, 2010 and 2019 were about 2.40, 2.52 and 2.58; respectively, which is of a severe meander type. The average rate of migration (Rm) of the study period from the Gharasu River during the years 2000 to 2010 was about 0.5 m / year. The value of this indicator for the period 2010 to 2019 has decreased to about 0.3 meters per year. According to calculations, the index has grown to about 0.4 m / year over the past 19 years (from 2000 to 2019). Another method called transect method was used to evaluate lateral variations of the study through the Gharasu River channel. According to calculations using the transect method over the past 19 years, a total of approximately 22.45 hectares of the Gharasu River margin lands have been lost due to erosion processes during the study period. This amount was about 13.75 ha during the period 2000 to 2010 and about 10.22 ha during the period 2010 to 2019.4-ConclusionIn this study, the morphology and lateral variations of the ditch of Gharasu River in Ardabil province were evaluated. Based on geomorphological conditions, slope and width of the flood plain as well as other factors (such as river discharge variations), the river was divided into three sub-intervals and 30 transects in the study area. In addition to the visual interpretation, in order to evaluate and analyse the morphology of the Gharasu River, quantitative indicators were required. The present study used four indices of curvature, central angle of the cornice, channel migration rate and transect method to detect and identify the river pattern as well as lateral channel changes. These indices were calculated over the time periods of 2000- 2010, and 2010-2019 for the study river channel. The results showed that the Gharasu River has had a developed meander pattern in most of the studies. The results of the two channel migration rate indices and the transect method also confirmed that, overall, the transverse changes of the Gharasu River channel have been low. Also, these two indices, similar to the Cornis curve coefficient and the central angle, showed that transverse dynamics have declined sharply in the last decade.
elnaz piroozi; Aghil Madadi; Sayyad Asghari Saraskanroud
Abstract
1-Introduction Rivers are dynamic forms of natural landscapes with different changes at different times and places. The effects of river adjustment caused by the natural factors require much longer span to reveal. However, sometimes the natural factors such as river floods, landslide, or earthquake can ...
Read More
1-Introduction Rivers are dynamic forms of natural landscapes with different changes at different times and places. The effects of river adjustment caused by the natural factors require much longer span to reveal. However, sometimes the natural factors such as river floods, landslide, or earthquake can lead to canal adjustments in a very short time (Chaiwongsaen et al, 2019:153(. In contrast, human activities can have a significant and rapid impact on natural processes and trends, resulting in a short time scale for river adjustments (Rinaldi & Simon, 1998:57). River canal instability plays a major role in erosion, destruction of beaches and riverbanks. This role becomes more significant when the canal and bed of the river is alluvial (Rezaei Moghadam, 2012:33). One of the key issues in studying the erosion and stability of rivers is the initiation of sedimentary particle movement. The motion of sediments occurs if the bed shear stress (available shear stress) induced by the flow exceeds a certain critical value. An alluvial canal, either artificial or natural, persists to deform its boundary by itself while transporting water and sediments. Therefore, erosion and riverbank instability have created major concerns worldwide over the past few decades and significant amount of money have been spent to sustain the riverbanks. Givi-Chay River which is almost 54 kilometers long, is one of the permanent rivers of Ardabil province, Iran; problems of bed and bank erosion are evident in different areas of this river and they damage agricultural lands and adjacent river installations. In addition, a review of the research shows that sufficient studies have not been carried out so far to reveal the stability, erosion and sedimentation process in Givi Chay River.Therefore, this study aimed to analyze and evaluate the erosion stability of Givi Chay River channel. 2-Methodology In this research, the topography map with a scale of 1: 50000, geology map with a scale of 1: 100000, and google earth and Landsat Eight images, including OLI sensor (2019), bedrock maps and the Givi-Chay River area at a scale of 1:2000 hydrological data from two Abegharm stations (upstream of the dam) and Firoozabad (downstream of the dam) and field data are used. In addition, to control the results obtained by quantitative methods, field studies are applied for confirmation and verification. ENVI 5.3, Arc GIS 10.5, Excel, and HECRAS software were also used for image processing and data analysis. The geomorphological parameters of the river and their variations including bending coefficient and central angle were measured. The curvature coefficient is one of the few criteria used in river shape segmentation using s=1/(y.2), i.e., by dividing the valley length by wavelength for each arc, it is calculated. The central angle of the arcs on each of the intervals was calculated using the relation A=180L / Rπ, where A is the central angle, R, of the fitted circle radius.The increased shear stress in the riverbed increases the load of the floor and the scour of the bed, which can affect the riverbanks as erosion, destruction, and rupture of the walls. Direct measurement of shear stress is a difficult task and therefore researchers have developed methods for indirect calculation of shear stress. Existing shear stress (boundary), lateral shear stress, and critical shear stress were calculated by means of equation 1, 2, and 3, respectively: (1) (2) (3) Relative Stability Index Calculation (RBS):Judet has introduced this index as the ratio of critical bed velocity to actual bed velocity. Olsen et al (1997) defined this index as the ratio between the critical shear stress and the shear stress of the sides. Relative stability index (RBS) was obtained using the following equations: (4) (5) (6) 3-Results and Discussion Investigation of the morphology of the intervals shows that in the first, second and fourth intervals the conduit is sinusoidal and in the fourth interval, the pattern is meandering. In addition, according to the results of the study, the first, second and third intervals are developed in a very meandering manner and the fourth interval is just a meandering one. shear stresses in sections 4, 3 (second interval) are more than other sections, and given the direct relationship between shear stress and depth and width of sections, even under current conditions there will be phenomena such as scouring and damaging river bank and rivers. In addition, in terms of critical shear stress, the highest shear stress is in sections 3 and 7. Due to the relative stability values, sections 5 and 7 are stable and other sections are unstable. In the first period, the river flows into a valley bed, and in parts formed by erodible formations and at sections close to the dam, the river width is approximately increased. Therefore, sections 1 and 2, which pass through alluvial terrace sediments, are in unstable condition. In the second interval and immediately after the Givi Dam, the river passes through the valleys overlooking the Givi town, where the width of the bed due to the types of the banks decreases and the riverbed contains coarse sediments covered by broken rocks. In other parts of the city of Givi, erosion conditions prevail and large volumes of flanking material (especially during floods) are eroded and loose flanks lead to the widening of canals and intra-canal ridges, and these sediments are clearly visible in bends, middle islands and marginal lands and steep banks. At sections where the river width is excessive and the slope decreases, the stability factor is almost high (sections 5 and 7). At the beginning of the third period, Firouzabad area is located on path of the flood of the previous interval and by joining Sanghor Chay, the river enters the mountainous part and the coastal areas have deep valleys with steep slopes. Along the river, due to collision with high mountains and rocky outcrops, the alternate route has a meander and river changes are subject to valley changes, and the meandering state is seen throughout the valley. In the fourth period, the river width is reduced and the riverbed is covered with coarse sediments, which extends to Ghezelozan. 4- Conclusion(S) According to the study results, in the plain interval, the main factor affecting the river meandering is the alluvial formation; here, the slope is low and the meanders are inscribed and plain, whereas in the mountainous part, the river changes are subject to valley changes and the meandering state is seen throughout the valley. According to the values of shear stress, the lowest boundary and bank shear stress is in sections 5, 6 and 7 and the highest is in sections 4, 3, 11 and 12. The highest critical shear stress is in sections 3 and 7 and the lowest is in sections 4, 2 and 12. The study of the relative stability of the river shows that the river is more unstable in sections crossing the old and new alluvial terraces, and in sections where the river width is high and the bed slope and flow rate have a decreasing trend, the coefficient of stability is relatively high. The third and fourth intervals are mountainous and semi-mountainous, respectively. In these intervals the river width is small and there is no agricultural land use .Lithologically, most of the third and whole of the fourth period consist of Eocene igneous and pyroclastic formations and they are resistant to erosion and the existing alluviums are the result of transport of water from sediments of other intervals.Therefore, the morphology of the river is affected by lithology and according to field evidence, the interval is stable .But the results of using mathematical and experimental methods have introduced the third and fourth intervals as unstable . Therefore, it can be acknowledged that the methods used in this study apply to the study of stability in rivers and alluvial intervals
Aghil Madadi; Elnaz Piroozi; Leila Aghayary
Volume 5, Issue 17 , March 2019, , Pages 85-102
Abstract
Introduction
One of the most striking natural hazards in the world is flood which generates a lot of financial and human losses every year. It can be said that in comparison with other natural hazards, it occurs with high abundance and in vast expanses. Some of its causes can be severe or prolonged ...
Read More
Introduction
One of the most striking natural hazards in the world is flood which generates a lot of financial and human losses every year. It can be said that in comparison with other natural hazards, it occurs with high abundance and in vast expanses. Some of its causes can be severe or prolonged rainfalls, melting, breaking the dam and landslide, high waves, channel closure, rainfall intensity, type of rainfall, time and volume of rainfall, previous river conditions, drainage basin, inappropriate use, and falling of forest trees in the sources of the rivers. Knowing susceptible areas to floods is one of the basic measures in natural resource management and development planning. One of the most important flood management methods is flood zoning. The zoning of potential flooding is to identify and describe areas with potential for surface runoff. The Khiyav Chay Watershed Basin, with an area of 318 km2, is located in Meshgin shahr. Due to the specific circumstances of the region, such as topography, slope, and climatic conditions (sudden precipitation and spring precipitation, melting, flooding of rivers in the spring), there is a high potential for flood occurrence. Therefore, the purpose of this research was to study the area's potential for flood occurrence.
Methodology
In this study, ten factors of slope, height, rainfall, CN, runoff height, distance from the river, soil, lithology, vegetation, and user-use were identified as effective factors for flood formation in the region. Using Landsat 8 images including OLI and TIRS sensors and the Maximum Likelihood supervised classification method, in the ENVI 5.3 environment, the land use map was obtained. Then the user map was compared with the index table and integrated with the hydrologic group data, and the CN curve number was prepared. In the next stage, with mean precipitation and CN, and by using SCS method, ARC GIS software and Arc-Hydro and Arc CN-Runoff subtraction, the runoff height of the range was calculated. Also, the NDVI index, one of the most widely used indices for vegetation monitoring, was undertaken to prepare a vegetation map of the basin. Then, the other layers of information were provided in the GIS environment. The weights of the layers using the Critical method based on the correlation, interference, and standard deviation of the factors were determined. The final analysis and modeling was done using the WLC model as one of the methods of multi-criteria analysis techniques.
Discussion
By studying the zoning of the potential flood area of the study area and comparing it with each of the standard maps, it was concluded that the high risk areas were mainly in the hilly and mountainous areas of the area (slope over60%). Due to the slope and elevation of the area, the main role was with runoff, flood discharge, penetration, precipitation losses, and flow and water velocity. In these high risk areas, due to the fact that most of the formations belong to the formation of volcanic activity in the late third and early fourth centuries, the degree of permeability was very low but the runoff and CN amount were high. Secondly, areas with potential hazard were located within the urban boundaries of Meshkinshahr. In the city of Meshgin Shahr, on the east side, is the deep valley of khiyave chay, where the khiyave chay River flows. Two other radial valleys in the natural pathway formed the surface water stream, along which residential neighborhoods were developed that were subject to flood and extreme flow of surface water. Due to the fact that most of the city is made up of asphalt and residential surfaces, the permeability was very low, in contrast to the amount of runoff (99%) and CN (curve above 8).
Conclusion
According to the results of weighing, height factors with weight coefficients (0.173), lithology with weight coefficients (0.163), slope with weight coefficient (0.139) and rainfall with weight (133/0) were the most important factors on flood formation in the region. The results of the study showed that 13.33% and 22.88% of the study area were in high risk and high class. According to the final map, high-risk areas, in the first priority, were mainly in the hilly and mountainous regions of the region, but in the second priority they were within the urban boundaries (especially in the central regions of the city due to lower construction and permeability). The results of the study also indicated that due to the high potential of the study area in terms of the risk of flood, water protection and protection measures at the basin level should be considered. In addition, the simultaneous use of remote-sensing and GIS and using the SCS-CN model could be useful in preparing a flood zoning map.
Volume 2, Issue 2 , January 2015, , Pages 25-40
Abstract
Because of providing proper living conditions, high soil fertility and accessibility to water resources fluvial environments have always been considered as desirable areas for human beings. Such areas, especially the stream environments have also been dynamic areas in terms of erosion processes. A study ...
Read More
Because of providing proper living conditions, high soil fertility and accessibility to water resources fluvial environments have always been considered as desirable areas for human beings. Such areas, especially the stream environments have also been dynamic areas in terms of erosion processes. A study of bank erosions, sedimentation and changes occurring in the current river beds, streams patterns and the like can be an important contribution to the field of nature management. This study has tried to use satellite imagery (Landsat), topographic and geological data, to investigate and assess the morphological changes which have occurred at two parts of the Zarine River (Jigatoo River). ArcGIS and ENVI software were the most important tools which were used to prepare and extract data in this study. According to the results, the second part of the area under study, which is located in a plain area, has been severely affected by the faults, and the direction of the river flow was forced to change path at several points following a fault path. The river pattern at this area is direct and in some cases the sinusoidal in sectors has been affected by the fault, while the general pattern is meander in other parts of the river. In the three time periods considered for the study both intervals number 1 and 2 of the riverbed area show reduction. This is to say that the area of the riverbed has reached 5.6 sq. km to 5.43 sq. km in the part of 1 and 6/19 km to 4.87 in the part 2. The river bank erosion rate between 1975 -1989 and 1989 - 2010 is respectively approximately 4.2 sq. km and 2.44 sq. km in part 1. This value for the second interval is respectively 2 and 1.49 sq. km. As a result of this destruction the large parts of the riverbed has dried due to redirection and relocation or has turned into meander lakes on the margins being respectively 3.44 and 2.48 sq. km in part 1and 3.29 and 1.52 is km in part 2 for the years 1975 to 1989 and 1989 to 2010.