- References
Adamowski, J., & Chan, H.F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1–4), 28-40.
Anh. Quan Tran, Taniguchi. Kenji. (2018). coupling dynamical and statistical downscaling for high-resolution rainfall forecasting: case study of the Red River Delta. Vietnam,
https://doi.org/10.1186/s40645-018-0185-6.
Chang, F., Chang, L., Huangm C. (2016). Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. Journal of Hydrology. Vol. 541, Part B, October 2016, 965-976.
Coppola, E., Szidarovszky, F., Poulton, M., & Charles, E. (2003). Artificial Neural Network Approach for Predicting Transient Water Levels in a Multilayered Groundwater System under Variable State, Pumping. and Climate Conditions. Journal of Hydrologic Engineering, 8(6), 348-360. doi:10.1061/(ASCE)1084-0699(2003)8:6(348).
Magesh, N.S., Chandrasekar, N., & Soundranayagam, J.P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques,
Geoscience Frontiers, 3(2), PP.189-196. doi:
http://dx.doi.org/10.1016/j.gsf.2011.10.007.
-Gazman, S., Paz, J., Target, M., (2017). The Use of NARX Neural Networks to Forecast Daily Groundwater Levels. Water Resources Management. 31(5), 1591–1603
Mohanty, S., Jha, M, Kumar, A. and Sudheer, K,P. (2010). Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India. Water Resources Management. 24(9), 1845-1865. From: doi: 10,1007/s11269-009-9527-x.
Nadiri, A., Vahedi, F., & Moghadam, A. (2016). Groundwater level prediction using a supervised composite fuzzy logic model. Hydrogeomorphology. 6, PP.115-134.
Sethi, R.R., Kumar, A., Sharma, S.P., & Verma, H.C. (2010). Prediction of water table depth in a hard rock basin by using artificial neural network. International Journal of Water Resources and Environmental Engineering. 2(4), 95-102.