Assessment of Actual Evapotranspiration (ALARM) under SSP Scenarios and Its Impact on Soil Salinity Case Study: Ahar Chay Watershed

Document Type : Original Article

Author

Assistant Professor, Department of Geography Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.

Abstract

In this study, the ALARM method (Analytical Land Atmosphere Radiometer Model) and UKESM1-0-LL, INM-CM5-0, CanESM5, BCC-ESM1, and ACCESS-CM2 models from the CMIP6 report and SSP scenarios (SSP1.2.6, SSP3.7.0, and SSP5.8.5 scenarios) were used to predict the amount of evapotranspiration in the Ahar Chay watershed. The results of the ALARM method were also compared with the FAO Penman-Monteith and Torrent-White methods. For this purpose, 72 Landsat 8 OLI sensor images related to row 168 and pass 33 were used. The results showed that the ALARM method had the highest correlation (R^20.915) and the lowest error (RMSE 1.493 and MSE 1.232 mm) with the Penman-Monteith method. The RMSE and MSE values for evapotranspiration in all the models studied were below 2.867, and the lowest RMSE and MSE values were for the ACCESS-CM2 model with numerical values of 0.198 and 0.165, respectively, in the SSP1.2.6 scenario. It is also worth noting that the models studied did not perform very well in evaluating the evapotranspiration parameter in the SSP5.8.5 scenario, and the RMSE and MSE values in all models were above 1. This value in SSP5.8.5 in the UKESM1-0-LL model has the highest evapotranspiration rates with numerical values of 2.867 and 2.735, respectively. Also, the amount of very high soil salinity, based on the NDSI and S indices, has increased by about 6,613.81 and 6,296.81 hectares, respectively, from 2013 to 2024, which has a correlation of 0.987 with the increasing trend of evaporation and transpiration in climate scenarios.

Keywords

Main Subjects


Alam, M. M., Akter, M. Y., Islam, A. R. M. T., Mallick, J., Kabir, Z., Chu, R., ... & Senapathi, V. (2024). A review of recent advances and future prospects in calculation of reference evapotranspiration in Bangladesh using soft computing models. Journal of Environmental Management, 351, 119714. https://doi.org/10.1016/j.jenvman.2023.119714.
Al-Hasani, A. A. J., & Shahid, S. (2024). Assessing the effect of climate change on spatiotemporal variations in reference evapotranspiration across Iraq. Theoretical and Applied Climatology, 1-21. https://doi.org/10.1007/s00704-024-05217-w.
Allen, R., Waters, R., Bastiaanssen, W., Tasumi, M., & Trezza, R. (2002). Sebal. Surface energy balance algorithms for land. Idaho implementation. Advanced Training and Users Manual, Idaho, USA.
Alqudah, Sh., Suleiman, A., Aljaafreh, S. (2024). Estimation of daily actual evapotranspiration for dates using the ALARM, Journal of Southwest Jiaotong University, 59(3), 521-531. https://doi.org/10.35741/issn.0258-2724.59.3.35.
Ardakani, M., Mahdavi Ardakani, R., Jabali, A., & Esfandiari, M. (2015). Evaluation of soil salinity by using satellite images and statistical methods: A case study of Chah-Afzal area, Ardakan. The Journal of Geographical Research on Desert Areas, 3(2), 25-46 (In persian). https://dorl.net/dor/20.1001.1.2345332.1394.3.2.2.4.
Asadi, M., & Kamran, K. V. (2022). Comparison of SEBAL, METRIC, and ALARM algorithms for estimating actual evapotranspiration of wheat crop. Theoretical and Applied Climatology149(1), 327-337. https://doi.org/10.1007/s00704-022-04026-3.
Asadi, M., & Kamran, K. V. (2023). Estimating selected cultivated crop water requirement-based surface energy balance algorithm. Arabian Journal of Geosciences, 16(5), 298. https://doi.org/10.1007/s12517-023-11386-1.
Asadi, M., & Karami, M. (2020). Estimation of evapotranspiration in Fars province using experimental indicators. Journal of Applied Researches in Geographical Sciences20(56), 159-175 (In persian). http://dx.doi.org/10.29252/jgs.20.56.159.
Asadi, M., Valizadeh Kamran, K., Baaghideh, M., & Adab, H. (2020). Estimation of Actual Evapotranspiration by Mountain SEBAL Algorithm Based on Pea Plants (Case Study: Semi-Northern Half of Ardabil Province). Hydrogeomorphology7(22), 67-85 (In persian). https://dorl.net/dor/20.1001.1.23833254.1399.7.22.4.8.
Chia, M. Y., Huang, Y. F., & Koo, C. H. (2020a). Reference evapotranspiration estimation using adaptive neuro-fuzzy inference system with limited meteorological data. In IOP conference series: Earth and environmental science (Vol. 612, No. 1, p. 012017). IOP Publishing. https://doi.org/10.1088/1755-1315/612/1/012017.
Chia, M. Y., Huang, Y. F., Koo, C. H., & Fung, K. F. (2020b). Recent advances in evapotranspiration estimation using artificial intelligence approaches with a focus on hybridization techniques—a review. Agronomy, 10(1), 101. https://doi.org/10.3390/agronomy10010101.
Gao, Y., Long, D., & Li, Z. L. (2008). Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China. International Journal of Remote Sensing, 29(11), 3295-3315. https://doi.org/10.1080/01431160701469073.
Golreyhan, J., Amininia, K., & Valizadeh Kamran, K. (2023). Estimation of Actual Evapotranspiration of Pasture Plants using SEBAL Algorithm (Research-Case Study: Ahar County). Journal of Geography and Regional Development21(3), 169-197 (In persian). https://doi.org/10.22067/jgrd.2023.82588.1291.
Islam, A. T., Shen, S., Yang, S., Hu, Z., & Chu, R. (2019). Assessing recent impacts of climate change on design water requirement of Boro rice season in Bangladesh. Theoretical and Applied Climatology, 138, 97-113. https://doi.org/10.1007/s00704-019-02818-8.
Jerin, J. N., Islam, H. T., Islam, A. R. M. T., Shahid, S., Hu, Z., Badhan, M. A., ... & Elbeltagi, A. (2021). Spatiotemporal trends in reference evapotranspiration and its driving factors in Bangladesh. Theoretical and Applied climatology, 144, 793-808. https://doi.org/10.1007/s00704-021-03566-4.
Karami, F., Bayati Khatibi, M., Kheirizadeh, M., & Mokhtari Asl, A. (2020). Evaluation of Performance of Support Vector Machine Algorithm in Landslide Susceptibility Zoning in Ahar-chai Basin. Journal of Geography and Environmental Hazards8(4), 1-17 (In persian).            https://doi.org/10.22067/geo.v8i4.83263.
Karami, M., & Asadi, M. (2016). Estimates and Zoning of reference evapotranspiration by FAO-Penman-Monteith (Case Study: North West of Iran). International Journal of Scientific Research in Science, Engineering and Technology, 2(1), 210-216. https://doi.org/10.32628/IJSRSET162119.
Karimi, S. R., nasrolahi, A., & iranshahi, M. (2024). Investigating the effects of climate change on reference evapotranspiration based on the SSP scenarios. Iranian Journal of Soil and Water Research54(11), 1759-1777. https://doi.org/10.22059/ijswr.2023.358697.669493.
La Fuente, S., Jennings, E., Lenters, J. D., Verburg, P., Tan, Z., Perroud, M., ... & Woolway, R. I. (2024). Ensemble modeling of global lake evaporation under climate change. Journal of Hydrology631, 130647. https://doi.org/10.1016/j.jhydrol.2024.130647.
Li, M., Chu, R., Shen, S., & Islam, A. R. M. T. (2018). Dynamic analysis of pan evaporation variations in the Huai River Basin, a climate transition zone in eastern China. Science of the Total Environment, 625, 496-509. https://doi.org/10.1016/j.scitotenv.2017.12.317.
Losgedaragh, S. Z., & Rahimzadegan, M. (2018). Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). Journal of Hydrology, 561, 523-531. https://doi.org/10.1016/j.jhydrol.2018.04.025.
Nabavi-Pelesaraei, A., Saber, Z., Mostashari-Rad, F., Ghasemi-Mobtaker, H., & Chau, K. W. (2021). Coupled life cycle assessment and data envelopment analysis to optimize energy consumption and mitigate environmental impacts in agricultural production. In Methods in sustainability science (pp. 227-264). Elsevier. https://doi.org/10.1016/B978-0-12-823987-2.00012-X.
Owaneh, O. M., & Suleiman, A. A. (2018). Comparison of the Performance of ALARM and SEBAL in Estimating the Actual Daily ET from Satellite Data. Journal of Irrigation and Drainage Engineering, 144(9), 04018024.  https://doi.org/10.1061/(ASCE)IR.1943-4774.0001335.
Salam, R., & Islam, A. R. M. T. (2020). Potential of RT, Bagging and RS ensemble learning algorithms for reference evapotranspiration prediction using climatic data-limited humid region in Bangladesh. Journal of Hydrology, 590, 125241. https://doi.org/10.1016/j.jhydrol.2020.125241.
Salimi, KH., Ahmadi sani, N., & Jalinejad, N. (2019). Mapping Soil Salinity Using Remote Sensing Technology (Case Study: South Lands of West Azarbaijan province). Water and soil science (Agricutural science), 29(2), 115-128 (In persian).
Santos, C., Bezerra, B., Silva, B., and Neale, C. (2009). Assessment of daily actual evapotranspiration estimated by remote sensing algorithms. Anais XIV Simposio Brasileiro de Sensoriamento Remoto, Natal, Brasil, 25-30 abril 2009, INPE, p. 427-434.
Shiri, J., Sadraddini, A. A., Nazemi, A. H., Kisi, O., Landeras, G., Fard, A. F., & Marti, P. (2014). Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of hydrology, 508, 1-11. https://doi.org/10.1016/j.jhydrol.2013.10.034.
Suleiman, A. A., Bali, K. M., & Kleissl, J. (2009). Comparison of ALARM and SEBAL evapotranspiration of irrigated alfalfa. In 2009 Reno, Nevada, June 21-June 24, 2009 (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.27033.
Suleiman, A., & Al-Bakri, J. (2011). Estimating actual evapotranspiration using ALARM and the dimensionless temperature. Evapotranspiration. Croatia: InTech Publisher, 163-194. https://doi.org/10.5772/13918.
Suleiman, A., & Crago, R. (2002a). Analytical land–atmosphere radiometer model. Journal of Applied Meteorology and Climatology, 41(2), 177-187. https://doi.org/10.1016/S0168-1923(02)00127-2.
Suleiman, A., & Crago, R. (2002b). Analytical land atmosphere radiometer model (ALARM) applied to a dense canopy. Agricultural and forest meteorology, 112(3-4), 151-159. https://doi.org/10.1175/1520-0450(2002)041%3c0177:ALARM%3e2.0.CO;2.
Suleiman, A., & Crago, R. (2004). Hourly and daytime evapotranspiration from grassland using radiometric surface temperatures. Agronomy Journal, 96(2), 384-390. https://doi.org/10.2134/agronj2004.3840.
Suleiman, A., Al-Bakri, J., Duqqah, M., & Crago, R. (2008). Intercomparison of evapotranspiration estimates at the different ecological zones in Jordan. Journal of Hydrometeorology, 9(5), 903-919. https://doi.org/10.1175/2008JHM920.1.
Valle Júnior, L. C. G. D., Vourlitis, G. L., Curado, L. F. A., Palácios, R. D. S., Nogueira, J. D. S., Lobo, F. D. A., ... & Rodrigues, T. R. (2021). Evaluation of FAO-56 procedures for estimating reference evapotranspiration using missing climatic data for a Brazilian tropical savanna. Water, 13(13), 1763. https://doi.org/10.3390/w13131763.
Xing, X., Liu, Y., Yu, M., & Ma, X. (2016). Determination of dominant weather parameters on reference evapotranspiration by path analysis theory. Computers and Electronics in Agriculture, 120, 10-16. https://doi.org/10.1016/j.compag.2015.11.001.
Yahaya, I., Li, Z., Zhou, J., Jiang, S., Su, B., Huang, J., ... & Jiang, T. (2024). Estimations of potential evapotranspiration from CMIP6 multi-model ensemble over Africa. Atmospheric Research300, 107255. https://doi.org/10.1016/j.atmosres.2024.107255.
Zeinadini, S., Anvari, S., & Zahmatkesh, Z. (2019). Investigation of Water Allocation Conditions in Aharchay Basin under Climate Change Impacts. Irrigation Sciences and Engineering42(4), 195-210. https://doi.org/10.22055/jise.2018.23237.1648.